1x2+2x3+3x4+4x5+5x6+6x7+7x8+......+nx(n+1) 要公式,别搞太深奥!!

2024-12-01 01:24:34
推荐回答(4个)
回答1:

先求它们的倒数和,再把结果倒回来。
1x2+2x3+3x4+4x5+5x6+6x7+7x8+8x9+9x10+10x11
=10×(10+1)×(10+2)÷3
=10×11×12÷3
=110×12÷3
=1320÷3
=440

回答2:

1x2+2x3+3x4+…+n(n+1)
=1^2+1+2^2+2+3^2+3+…+n^2+n
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=1/6*n(n+1)(2n+1)+1/2*n(n+1)
=1/6*n(n+1)(2n+1+3)(提取公因式)
=1/3*n(n+1)(n+2)

回答3:

1x2+2x3+3x4+…+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)[(2n+1)+3]/6

回答4:

淡定 ``~~有点难度!