《珍珠鸟》和《斑羚飞渡》相同:1 都是写动物。2 都是以叙事方式写的。
《珍珠鸟》和《斑羚飞渡》不相同:1 《珍珠鸟》抒发爱鸟之情。《斑羚飞渡》抒发对斑羚伶悯。 2 《珍珠鸟》温暖。《斑羚飞渡》凄零。 3 《珍珠鸟》按时间写。《斑羚飞渡》按事情发展写。
1、珍珠鸟
真好!朋友送我一对珍珠鸟。放在一个简易的竹条编成的笼子里,笼内还有一卷干草,那是小鸟舒适又温暖的巢。
有人说,这是一种怕人的鸟。
我把它挂在窗前。那儿还有一盆异常茂盛的法国吊兰,我便用吊兰长长的、串生着小绿叶的垂蔓蒙盖在鸟笼上,它们就像躲进深幽的丛林一样安全,从中传出的笛儿般又细又亮的叫声,也就格外轻松自在了。
阳光从窗外射入,透过这里,吊兰那些无数指甲状的小叶,一半成了黑影,一半被照透,如同碧玉,斑斑驳驳,生意葱茏。小鸟的影子就在这中间隐约闪动,看不完整,有时连笼子也看不出,却见它们可爱的鲜红小嘴儿从绿叶中伸出来。
我很少扒开叶蔓瞧它们,它们便渐渐敢伸出小脑袋瞅瞅我。我们就这样一点点熟悉了。
三个月后,那一团愈发繁茂的绿蔓里边,发出一种尖细又娇嫩的鸣叫。我猜到,是它们有了雏儿。我呢?决不掀开叶片往里看,连添食加水时也不睁大好奇的眼去惊动它们。过不多久,忽然有一个小脑袋从叶间探出来。更小哟,雏儿!正是这个小家伙!
它小,就能轻易地由疏格的笼子钻出身。瞧,多么像它的母亲�红嘴红脚、灰蓝色的毛,只是后背还没有生出珍珠似的圆圆的小白点。它好肥,整个身子好像一个蓬松的球儿。
起先,这小家伙只在笼子四周活动,随后就在屋里飞来飞去,一会儿落在柜顶上,一会儿神气十足地站在书架上,啄着书背上那些大文豪的名字;一会儿把灯绳撞得来回摇动,跟着,跳到画框上去了。只要大鸟在笼里生气地叫一声,它立即飞回笼里去。
我不管它,这样久了,打开窗了,它最多只在窗框上站一会儿,决不飞出去。
渐渐它胆子大了,就落在我书桌上。
它先是离我较远,见我不去伤害它,便一点点挨近,然后蹦到我的杯子上,俯下头来喝茶,再偏过脸瞧瞧我的反应。我只是微微一笑,依旧写东西,它就放开胆子跑到稿纸上,绕着我的笔尖蹦来蹦去,跳动的小红爪子在纸上发出嚓嚓响。
我不动声色地写,默默享受着这小家伙亲近的情意。这样,它完全放心了,索性用那涂了蜡似的、角质的小红嘴,“嗒嗒”啄我颤动的笔尖。我用手抚一抚它细腻的绒毛,它也不怕,反而友好地啄两下我的手指。
有一次,它居然跳进我的空茶杯里,隔着透明光亮的玻璃瞅我。它不怕我突然把杯口捂住。是的,我不会。
白天,它这样淘气地陪伴我;天色入暮,它就在父母的再三呼唤声中,飞向笼子,扭动滚圆的身子,挤开那些绿叶钻进去。
有一天,我伏案写作时,它居然落到我的肩上。我手中的笔不觉停了,生怕惊跑它。呆一会儿,扭头看,这小家伙竟趴在我的肩头睡着了,银灰色的眼睑盖住眸子,小红脚刚好给胸脯上长长的绒毛盖住。我轻轻抬一抬肩,它没醒,睡得好熟!还呷呷嘴,难道在做梦?
我笔尖一动,流泻下一时的感受:
信赖,往往创造出美好的境界。
2、斑羚飞渡
我们猎手队分成好几个小组,在猎狗的帮助下,把七八十只斑羚逼到戛洛山的伤心崖上。
伤心崖是戛洛山的一座山峰,像被一把利斧从中间剖开,从山底下的流沙河抬头往上看,宛如一线天。隔河对峙的两座山峰相距约六米左右,两座山都是笔直的绝壁。斑羚虽有肌腱发达的四条长腿,极善跳跃,是食草类动物中跳远冠军,但就象人跳远有极限一样,在同一水平线上,健壮的公斑羚最多只能跳出五米远,母斑羚、小斑羚和老斑羚只能跳出四米左右,而能一跳跳过六米宽的山涧的超级斑羚还没有生出来呢。
开始,斑羚们发现自己陷入了进退维谷的绝境,一片惊慌,胡乱窜跳。有一只老斑羚不知是老眼昏花没有测准距离,还是故意要逞能,竟退后十几步一阵快跑奋力起跳,想跳过六米宽的山涧,结果在距离对面山峰还有一米多的空中哀咩一声,像颗流星似地笔直坠落下去,好一会儿,悬崖下才传来扑通的落水声。
过了一会儿,斑羚群渐渐安静下来,所有的目光集中在一只身材特别高大、毛色深综油光水滑的公斑羚身上,似乎在等候这只公斑羚拿出使整个种群能免遭灭绝的好办法来。毫无疑问,这只公斑羚是这群斑羚的头羊,它头上的角向两把镰刀。镰刀头羊神态庄重地沿着悬崖巡视了一圈,抬头仰望雨后湛蓝的苍穹,悲哀地咩了数声,表示子也无能为力。
斑羚群又骚动起来。这时,被雨洗得一尘不染的天空突然出现一道彩虹,一头连着伤心崖,另一头飞越山涧,连着对面的那座山峰,就像突然间架起了一座美丽的天桥。斑羚们凝望着彩虹,有一头灰黑色的母斑羚举步向彩虹走去,神情缥缈,似乎已进入了某种幻觉状态。也许,它们确实因为神经高度紧张而误以为那道虚幻的彩虹是一座实实在在的桥,可以通向生的彼岸。
灰黑色母斑羚的身体已经笼罩在彩虹眩目的斑斓光谱里,眼看就要一脚踩进深渊去,突然,镰刀头羊“咩咩”发出吼叫。这叫声与我平常听到的羊叫迥然不同,没有柔和的颤音,没有甜腻的媚态,也没有绝望的叹息,音调虽然也保持了羊一贯的平和,但沉郁有力,透露出某种坚定不移的决心。
随着镰刀头羊的那声吼叫,灰黑色母斑羚如梦初醒,从悬崖边缘退了回来。
随着镰刀头羊的那声吼叫,整个斑羚群迅速分成两拨,老年斑羚为一拨,年轻斑羚为一拨。在老年斑羚队伍里,有公斑羚,也有母斑羚;在年轻斑羚队伍里,年龄参差不齐,有身强力壮的中年斑羚,也有刚刚踏入成年斑羚行列的大斑羚,也有稚气未脱的小斑羚。两拨分开后,老年斑羚的数量比年轻斑羚那拨还少十来只。镰刀头羊本来站在年轻斑羚那拨里,眼光在两拨斑羚间转了几个来回,悲怆的轻咩了一声,迈着沉重的步伐走到老年斑羚那一拨去了。有几只中年斑羚跟着镰刀头羊,也自动从年轻斑羚那拨里走出来,进入老年斑羚的队伍。这么一来,两拨斑羚的数量大致均衡了。
就在这时,我看见,从那薄老斑羚里走出一支公斑羚来。公斑羚朝那拨年轻斑羚示意性地咩了一声,一只半大斑羚应声走了出来。一老一少走到了伤心崖,后退了几步,突然,半大的斑羚朝前飞奔起来,差不多同时,老斑羚也快速起跑,半大的斑羚跑到悬崖边缘,纵身一跃,超山涧对面跳去;老板领紧跟半大斑羚后面,头一勾,也从悬崖上窜跃出去;这一老一少跳跃的时间稍分先后,跳跃的幅度也略有差异,半大斑羚角度稍高些,老斑羚角度稍低些,等于是一前一后,一高一低。我吃了一惊,怎么,自杀也要老少结成对子,一对一去死吗?这只大斑羚和这只老斑羚除非插上翅膀,否则绝对不可能跳到对面那座山崖上去!突然,一个我做梦都想不到的镜头出现了,老斑羚凭着娴熟的跳跃技巧,在大斑羚从最高点往下落的瞬间,身体出现在半大斑羚的蹄下。老斑羚的跳跃能力显然要比半大斑羚略胜一筹,当它的身体出现在半大斑羚的蹄下时,刚好处在跳跃弧线的最高点,就像两艘宇航飞船在空中完成了对接一样,半大斑羚的四只蹄子在老斑羚宽阔结实的背上猛蹬了一下,就象踏在一块跳板上,它在空中再度起跳,下坠的身体奇迹般地再度升高。而老斑羚就像燃料已输送完了的火箭残壳自动脱离宇宙飞船,不,比火箭残壳更悲惨,在半大斑羚的猛力踢蹬下,像只突然断翅的鸟笔直坠落下去。这半大斑羚的第二次跳跃力度虽然不如第一次,高度也只有地面跳跃的一半,但足以够跨越剩下的最后两米路程了。瞬间,只见半大斑羚轻巧地落在了对面山峰上,兴奋地咩叫了一声,钻到磐石后面不见了。
试跳成功。紧接着,一对对斑羚凌空跃起,在山涧上空画出了一道道令人眼花缭乱的弧线。每一只年轻斑羚的成功飞渡,都意味着有一只老年斑羚摔得粉身碎骨。
山涧上空,和那道彩虹平行,又架起了一座桥,那就是一座用死亡做桥墩驾驶起来的桥。没有拥挤,没有争夺,秩序井然,快速飞渡。我十分注意盯着那群要送死的老斑羚,心想,或许个别滑头的老斑羚会从注定死亡的那拨偷偷溜到新生的那拨去,但让我震惊的是,从头至尾没有一只老斑羚调换位置。
它们心甘情愿用生命为下一代搭起一条生存的道路。
绝大部分老斑羚都用高超的跳跃技艺,帮助年轻斑羚平安地飞渡到对岸的山峰。只有一头衰老的母斑羚,在和一只小斑羚空中衔接时,大概力不从心,没能让小斑羚踩上自己的背,一老一小一起坠进深渊。
我没有想到,在面临种群灭绝的关键时刻,斑羚群竟然想出牺牲一半挽救另一半的办法来赢得种群的生存机会。我没想到,老斑羚们会那么从容地走向死亡。
我看得目瞪口呆,所有的猎人都看得目瞪口呆,连狗也惊讶地张大嘴,伸出了长长的舌头叫。
最后伤心崖上只剩下那只成功指挥了这群斑羚集体飞渡的镰刀头羊。这群斑羚不是偶数,恰恰是奇数。镰刀头羊孤零零地站在山峰上,既没有年轻的斑羚需要它做空中垫脚石飞到对岸去,也没有谁来帮它飞渡。只见它迈着坚定的步伐,走向那道绚丽的彩虹。弯弯的彩虹一头连着伤心崖,一头连着对岸的山峰,像一座美丽的桥。
它走了上去,消失在一片灿烂中。
相同:写的都是动物
不同:斑羚飞渡有些悲剧式结尾,写人和动物没有和谐相处,珍珠鸟写的是人和动物建立了友好,和谐的关系
前者较温暖,用养小鸟的事情体现了对自由的渴望,后者较凄厉,结局像是在泪水中含着微笑,体现了人与动物的和谐极难实现,斑羚为了自由不顾一切
鸟给人的启示
鸟对人类的贡献是众所周知的。鸟类还有一种特殊的作用,这就是它启发了人类的智慧,为人类探求理想的技术装置或交通工具,提供了原理和蓝图。可以说,在结构、功能、通讯等方面,鸟类是人类的老师,许多现代科学技术问题,科学家常常需要去请教鸟类。
鹰击长空,鸽翔千里,鸟类可以在空中自由飞行,这对人类是多么大的吸引和激励啊!传说,在2000多年前,我国的著名工匠鲁班,曾研究和制造过木鸟。据历史文献记载,1900多年前,我国就有人把鸟羽绑在一起,做成翅膀,能够滑翔百步以外。400多年以前,意大利人达·芬奇根据对鸟类的观察和研究,设计了扑翼机,试图用脚蹬的动来扑动飞行。后来,经过许多科学家的试验,人们才弄清鸟类定翼滑翔的机理,认识到机翼必须像鸟翼那样前缘厚,后缘薄,构成曲面才能产生升力,再加上工业提供了轻质的金属材料和大功率发动机,终于在1903年发明了飞机,实现了几千年来人类渴望飞上天空的理想。
人类自从发明了飞机,飞上天空以后,就在不断地对飞机进行革新改造,不论是体积、载重、速度,都很快超过了鸟类。现代飞机已经比任何鸟类都飞得更快、更远、更高,尤其是近年来出现的各种飞行器,可以到星际间航行,更是鸟类所望尘莫及的。尽管这样,在某些飞行技术和飞行器的结构上,人造的飞机仍然不如鸟类那么完善而且精致,更不要说消耗能源方面了。例如,金鸻可以连续在海洋上空飞行4000多公里,而体重只减少60克,如果飞机能用这种效率飞行,那将会节省许多燃料。
鸟类的翅膀具有许多特殊功能和结构,使得它们不仅善于飞行,而且会表演许多“特技”,这些特技还是目前人类的技术难以达到的。小小的蜂鸟是鸟中的“直升机”,它既可以垂直起落,又可以退着飞。在吮吸花蜜时,它不像蜜蜂那样停落在花上,而是悬停于空中。这是多么巧妙的飞行啊。制造具有蜂鸟飞行特性的垂直起落飞机,已经成为许多飞机设计师梦寐以求的愿望。
鹰的眼睛是异常敏锐的。翱翔在两三千米高空的雄鹰,两眼扫视地面,它能够从许多相对运动着的景物中发现兔子、老鼠,并且敏捷地俯冲而下,一举捕获。鹰眼还具有对运动目标敏感、调节迅速等特点,它能准确无误地识别目标。现代电子光学技术的发展,使我们有可能研究一种类似鹰眼的系统,帮助飞行员识别地面目标,同时可以控制导弹。
候鸟的迁徙路程,短则几百公里,长则几千公里。但是,它们总能准确地到达世世代代选定的目的地。这说明候鸟有极好的导航本领。科学家们早已对这些现象展开了研究,认为鸟类所以有很好的导航本领,是因为它们都有各自的特殊感觉器官,能够感觉和分析自然界不同地域环境因素的变化,从而辨认方向,寻找迁徙路线。有的靠辨认太阳的位置,利用太阳作定向标;有的靠辨认星星的方位,利用星象导航;有的靠感觉地球磁场的变化,利用地磁导航;还有的利用地球的重力场导航。弄清鸟类导航的原理之后,仿生学家和设计师就可以模仿制造各种小巧可靠的导航仪器,为发展航空、航海事业做出贡献。
在企鹅的启示下,人们设计了一种新型汽车——“企鹅牌极地越野汽车”。这种汽车用宽阔的底部贴在雪面上,用轮勺推动前进,这样不仅解决了极地运输问题,而且也可以在泥泞地带行驶。
此外,鸟类所特有的生理结构和功能,还为机械系统、仪器设备、建筑结构和工艺流程的创新,提供了许多仿生学上的课题。所以,鸟既是人类的朋友,又是人类的老师。为了科学的未来和人类的幸福,我们也应当好好保护鸟类。
鸟给人类了许多无价的启示:人们看到天空中的飞鸟,想到了一种能把我们带到天空中飞的机器…飞机;山雕飞落地刹那间的坚定和稳重,让人觉得自己也可以从天空中飞下,安全落地;飞翔中的蜻蜓,给人类创造直升飞机带来了灵感;猫头鹰灵巧无声的飞行,改造了飞机的性能;天鹅在水面上撩飞的优雅,使水上飞机问世,。研究金翅鸟能改善飞机功能、研究鸽子可预测地震等那些肯思考的人,通过观察天空中飞行的鸟类,获得了灵感,而创造出来的奇迹,让我们受益无穷
鸟类在自然界的作用
鸟类在自然界的作用系指鸟类在不同生态系统(如森林生态系统,草原生态系统及农田、湖泊、海洋等生态系统)的地位和作用。鸟类是生态系统的重要成员,虽然对生产力可能没有重大影响,但对所食猎物有密度制约作用。此外,鸟类担负着种子及营养物的输送,参与系统内能量流动和无机物质循环,维持生态系统的稳定性。
鸟类捕食昆虫和小型啮齿类动物,在维持自然界生态平衡中的作用并不是直接能感知的,因为所涉及的环境因子十分复杂,必须通过严密的实验设计、繁重的野外调查和实验室工作以及细致的分析,才能得到较为正确的结果。近年国内外有关鸟类捕食作用的定量研究及有关鸟类捕食作用特点的研究,较为恰当地揭示了鸟类在生态系统中的作用,尤其是食虫鸟在森林生态系统中的地位和作用。
一、鸟类的捕食作用
鸟类飞行力强,速度快,活动范围大,而且鸟类的迁徙性,繁殖季节的领域性及繁殖季节后的集群性使鸟类群落结构十分复杂,种类和数量均有很大的波动。鸟类种群的这种集聚及移动可使其数量猛增,并在局部地区“清理”或“消灭”某些猎物。
由于鸟类食量大,代谢速度快,多数食虫鸟类又不像食谷鸟那样具有嗉囔,食物通过消化管的速率也很不相同,与生理需要、取食方式、取食季节、鸟的年龄、鸟的状态及食物本身的性质等都有密切关系。食物消化率的不同,会使在剖胃检查时对某些食物的比率可能估计得过度或过低。为了补偿这些差别,在估计食物组成时要应用校正因子(表1)。要根据虫体残部特征、幼虫头部的被膜、胸及臀部的盾、胸足和腹足残块及上颚残留物来识别种类和数量。
表1 20天幼虫期及15天蛹期内鸟类对5~6龄云杉卷中叶蛾的估计消费量(只/公顷)
(自Crawford等,1983)
任何一种鸟类,即使在同一时期,绝不会只以同一种昆虫为食。其食物组成不仅有有害昆虫,也有有益昆虫以及一些已被其它昆早寄生的昆虫,从而增加了分析鸟类对有害昆虫抑制作用的复杂性。然而,最近的一些研究结果表明,鸟类倾向于避开被寄生的昆虫。这样,鸟类与寄生性昆虫可能是互补而不是竞争。还有一些鸟类表现出嗜食某些害虫或虫态,如杜鹃嗜食各种大小的毛虫。某些鸟类喜食成虫,这一点在控制虫害方面很重要,因为成虫阶段的死亡,常对下一世代的种群数量起重要影响
鸟类所食食物有明显的季节性变化。当冬季食物短缺时,许多食虫鸟改吃植物性食物。鸟类生活史的不同阶段中所食食物种类也有变化。雏期阶段,即使是食谷鸟类也必须以昆虫等动物性食物喂养雏鸟,以保证雏鸟正常发育及存活。一般说来,鸟类捕食的食物种类、状态及时期,与自然界能提供的食物资源相一致,这是鸟类与环境之间长期演化适应的结果
鸟类能够影响昆虫种群的数量和动态,同样,昆虫的种类和密度对鸟类的捕食作用也有重要影响。大多数鸟类对猎物种群密度有功能反应和数量反应。前者指当猎物密度增加时,捕食者企图攻击更多的猎物而产生的行为上的变化。后者是由于猎物密度增加致使捕食者在数量上引起的变动。数量上的变化可因繁殖引起,也可因“侵入”而引起。鸟类对昆虫密度的功能反应和数量反应的共同影响可归结为“鸟类对昆虫的直接影响”。鸟类也可以间接影响昆虫种群,这主要是通过改变猎物的微生境,使其对天气、寄生及可能的疾病和病毒更敏感。
查明鸟类的捕食特性以及鸟类与猎物种群的相互作用,对于了解鸟类在生态系统中的地位和作用十分重要。通过鸟类的捕食作用,主要猎物的密度是否被抑制或抑制到何种程度,也是有害昆虫综合治理十分需要的参数。
二、鸟类对森林害虫的控制作用
鸟类对许多森林害虫有重要的捕食作用。限于篇幅,我们仅举一些比较显著的例子,借以说明鸟类对控制各个领域内的森林害虫的作用。
(一)鸟类对食叶性害虫的直接影响
松毛虫(Dendrolimus spp.)是我国主要的食叶性害虫。浙江安吉的调查表明,不同时期和不同地块的鸟类对松毛虫的捕食作用很不相同(表4)。鸟类繁殖季节及林缘,捕食作用可达18.5%和22.2%,而其它地块仅为4.7%。繁殖季节过后,同为林缘,捕食作用下降到8.7%,约为繁殖季节的1/3。在福建漳浦县,食虫鸟对4龄以上松毛虫幼虫的捕食率分别为19.73%(第3代)和48.75%(第4代)。在各种天敌捕食效应中,食虫鸟对松毛虫种群的控制作用最大。通过研究大山雀的生育力、雏鸟食物组成及食物中松毛虫食块的比率,发现随着松毛虫种群密度由高(1985年)到低(1987年),然后又逐渐回升(1988年)的周期性变化,雏鸟食物中松毛虫食块的比率也相应变化(表5),平均窝卵数和窝雏数有不断增加的趋势且繁殖季节开始时间明显提前(表6),表现出明显的功能反应和数量反应。值得注意的是,当松毛虫种群密度低时,尽管大山雀繁殖种群的密度、窝雏数以及雏鸟食中松毛虫食块的比率也相应减少,但捕食作用却比松毛虫种群密度高时增加 11.24倍。
表4 防鸟围网内外松毛虫数量(自楚国忠,1987)
表5 大山雀第一批雏鸟阶段,日平均食物中松毛虫比率
(自楚国忠,1989)
表6 大山雀第一批雏鸟阶段生育力参数的年变化
(自楚国忠,1989)
云杉卷叶蛾(Choristoneura burnijerana)是北美北方云杉- 冷杉森林中最主要的食叶害虫。有人估计在卷叶蛾大发生后的衰落阶段,鸟类约消费13%幼虫。当每公顷卷叶蛾为1235000~2 471 000条时,鸟类的控制程度为3.5~7%。还有人通过胃容物分析,发现在卷叶蛾大发生条件下,鸟胃食物中40%为卷叶蛾。4年分析结果,卷叶蛾在鸟胃中的比率为7~46%。当卷叶蛾大发生时,鸟类既有功能上的反应也有数量上的反应。原来在地面、树干取食和食草籽的鸟类改变食性,如橙顶灶鸫、草鹀(Junco spp.)、啄木鸟及交嘴雀开始吃卷叶蛾的卵和蛹。几种林莺表现出最大的数量反应,虽然有的林莺数量下降,但栗胸林莺(Dendroica castanea)数量增长12倍,橙胸林莺(D.fusca)9倍。当然,数量大发生时卷叶蛾的密度增加 8000倍。
当松色卷蛾(Choristoneura pinus)发育到4~5龄时,许多鸟类改变食性,开始取食这种丰富的食物,捕食作用发生在老熟幼虫以后,一直到蛹和成虫阶段。第二年,大量乌鸫进入240公顷地块内,当时的松色卷蛾每公顷约24700条,鸟类的捕食作用从第一年的 40~45%增加到第二年的 60~65%。几种山雀取食冬尺蠖(Operophtera brumata)幼虫的数量较低,只有 0.3~2.6%,但取食约10%的羽化的成虫,且主要是雌虫,这样,相当20%的成虫被捕食。在匈牙利,家麻雀和树麻雀可杀死98%以上的成虫,可能对美国白蛾(Hyphantria cunea)起重要控制作用。在日本,树麻雀和灰椋鸟(Sturnus cineraceus)约杀死 40~50%黄昏前出没的美国白蛾,由于这种蛾子的交尾活动发生在日落到日出这段时间,鸟类捕食引起的死亡对该种昆虫的种群动态可能有重要影响。有人在研究山雀和戴菊(Regulus regulus)时发现,大山雀有规律地取食幼林球果小卷蛾幼虫(Ernarmonia conicolana),捕食强度随球果内幼虫密度不同而不同,似乎有一个临界值(每50个球果10只幼虫)。超过此临界值,有利于鸟类捕食。虽然大山雀可能消灭50%以上的越冬老熟幼虫,第二年的种群数量仍然增长。
(二)鸟类对树皮小蠹虫的直接影响和间接影响
啄木鸟是树皮小蠹虫的主要捕食者。主要有毛发啄木鸟(Dendrocopos villosus)、绒啄木鸟(D.pubescens)和三趾啄木鸟(Picoides tridactylus)。它们既表现出功能反应,也表现出数量反应。数量上的反应尤为重要,特别是在局部地区。曾记录到一块火烧过的林地,啄木鸟密度增 加50倍,这种聚集有时在小块林地超过小蠹虫增加的倍数。当红翅小蠹虫(Dendroctonus,ru-fipennis)一般发生时,啄木鸟的取食量为20~29%,由中等密度到高密度时,通过啄木鸟自己取食及其它方式(如树皮干燥)可消灭小蠹虫的24~98%。啄木鸟取食活动可以促进树皮干燥。除啄木鸟外,另有8种鸟类捕食10%的红翅小蠹成虫。啄木鸟捕食瘤额大小蠹(D.frontalis)的数量从5~86%。不同地区报道的结果如此差异,可能是由于气候、暴发程度及过程、每年发生的世代数不同,因而啄木鸟取食活动后所引起的影响也不同。外表树皮啄掉后,剩下的树皮干得快,更容易受到不良气候及疾病的影响,这种死亡率往往比啄木鸟吃掉的还要大。
取食西松大小蠹(D.brevicomis)的鸟类共有4科11种。6种鸟(不包括啄木鸟)捕食成虫,3年中的捕食率在8~26%之间。毛发啄木鸟、绒啄木鸟、北美黑啄木鸟(Dryocopus pileatus)、白头啄木鸟(Picoides albolervatys)是加利福尼亚塞拉中部的西松大小蠹幼虫的最主要捕食者。在大发生的初期,捕食率为32%。在大发生区,啄木鸟种群数量增加。最初是由于迁入,随后则是由于树木死亡增加了啄木鸟巢址和栖居地的可利用性。啄木鸟寻找小蠹虫时,需剥落、刺透或在树皮上凿孔,被啄木鸟剥落的树皮中,有相当数量的小蠹虫卵及约58%的幼虫,它们在冬季都要死亡。啄木鸟啄过后,树皮变薄,温度与湿度都与原来树皮很不相同,减少了树皮对残留小蠹虫的保护作用,也给具短产卵器的寄生者造成产卵机会,所有这些间接影响都增加了小蠹虫的死亡(见图)。
(三)鸟类对蛀干害虫及象鼻虫的直接影响
啄木鸟也是蛀干害虫的主要捕食者。对虎橡天牛(Goes tigrinus)幼虫的捕食率可达32% 及 65%,对山毛榉天牛(G.pulverulentus)幼虫的捕食率可达39%。在两个研究点,对杨黄斑楔天牛(Saperda calcarata)的幼虫捕食率分别为13%和65%。还有人发现,斑啄木鸟食物中98%是山杨楔天牛(Saperda carcharias)幼虫,估计可减少该幼虫的12%。啄木鸟也是紫丁香钻心虫(Podosesia syringae)的最重要天敌,可引起该种虫子 67~81%的死亡。在荷兰,啄木鸟对木蠹象(Pissodes piniphilus)有功能反应和数量反应。木囊象种群数量低时,啄木鸟的捕食量较小,随着木蠹象幼虫数量增加,95%的幼虫和蛹可能被啄木鸟啄食,特别是在食物短缺阶段。但是,树根处的木蠹象往往不能被捕食。
(四)鸟类与昆虫病原物的扩散
已经证明,通过取食被感染的昆虫,鸟类能散布昆虫病原病毒。从树上收集的49堆鸟粪中,44个具有感染性,检测幼虫的89.9%被感染核多角体病毒(NPV)并死亡。鸟类是病毒的被动携带者,冬季时,病毒可至少被扩散到离中心点6km。当然,由于气候及其它条件不同,被吃的感染虫体的鸟粪并不都具有活性。
总之,森林是鸟类的重要生活场所,鸟类和害虫都是森林生态系统的成员,在长期进化和自然选择中形成复杂的捕食者-猎物系统,鸟类是捕食者-猎物系统的重要成分。鸟类的随机捕食性可在生态系统中发挥功能上的控制作用,对许多森林昆虫的种群动态起重要影响。鸟类不仅是害虫的直接死亡因子,还可以通过传播昆虫病原微生物,或者通过改变微生境影响寄生者和捕食者等方式,间接影响害虫种群。当害虫种群密度低或处于密度增加时,鸟类降低害虫数量的作用远较大发生时明显得多。鸟类的主要作用是阻滞或防止害虫大发生,或使大发生的间隔时间加长。但是,单靠鸟类不能使相当范围内大发生的害虫种群瓦解。害虫大发生时,鸟的生殖潜能、取食习性及领域关系减少了它们作为捕食者的影响力。如果害虫发生是小范围的,由于有留鸟的侵入或大群游动鸟的流入,鸟类还可以发挥控制作用,对已达顶峰的害虫种群可加速其衰落。
三、鸟类的其它作用
猛禽(鹰、鸮、隼、雕等)常以森林、草原、农田中的鼠类为食。一些鸦科鸟类和伯劳也能捕食鼠类,它们与其它天敌一道,共同抑制鼠类数量。在结构完整的森林环境中,天敌可抑制和延缓鼠类数量急剧增加,而且还可使数量增加的鼠群密度降低。有人在360只鵟的胃内,共找出1348只老鼠的尸体,有人研究了 19 000块猫头鹰的食物团,发现有46 179只小型兽类,几乎全部是老鼠。对长耳鸮长达5年的食性研究证实,它的主要食物是鼠类,只有1.3%是小鸟。分析湖北武昌越冬长耳鸮的食物残块,发现70.3%是小型鼠类,主要是黑线姬鼠。1982~1986年,在58个乌林鸮(Strix nebulosa)巢中收集 923个食块,其中田鼠(Microtus spp.)和平齿囊鼠(Thomomys talpoides)各占 52%和 29%。
很多鸟类,特别是兀鹰、猫头鹰等猛禽以及海鸥、乌鸦等,都有嗜食腐肉习性。它们在消灭有病的动物和腐烂尸体,消除有机物对环境污染方面有特殊贡献。鸟类可吃掉那些将幼虫寄生在家畜体内外的昆虫,椋鸟和食蜱类鸟可解除危及家畜及野生动物的蜱害及其它寄生虫。
许多鸟类是开花植物的传粉者,尤其是某些热带鸟类,如蜂鸟、花蜜鸟、太阳鸟、啄花鸟、绣眼鸟、鹎、管舌鸟及鹦鹉,常是某些开花乔木和灌木的重要授粉者。没有这些鸟类,自然界的生态平衡可能会被严重扰乱。另外,许多鸟类有储藏种子的行为。松鸦通常将球果藏在叶子、苔藓、石块下,一群松鸦(数量约30~40只)曾收集200 000个松果并带出 1km外。马来半岛低湿林中有7种鸠类取食至少22种榕树果实,绿鸠专食无花果树的种子,通过排粪将种子散布到远方。鸟类散布种子的距离可长可短,许多迁徙鸟类消化道中仍有可存活的种子,它们散布的距离可能稍远些。有人证明,某些硬壳的植物种子通过鸟类消化道后更容易萌发。有些食虫鸟类,如三趾啄木鸟(Picoides spp.)、鸫、山雀和也是重要的散布种子的鸟类。橡树啄木鸟(Melanerpes formicivorus)在各种树上及木质杆上凿洞,并用附近的球果将洞塞满。鸟类所储藏的球果并不都能被它们重新找到,这些被遗忘的果实常是森林扩展的一个原因。
这么长,自己找啦.........