高数高手来算这个,1+(1+2)+(1+2+3)+...+(1+2+3+...+n)这个怎么算?

2024-12-02 17:27:53
推荐回答(1个)
回答1:

1=(1+1)1/2
1+2=(1+2)2/2
1+2+3=(1+3)3/2
1+2+3+4=(1+3)3/2
1+2+3+...+n=(1+n)n/2
题目转化为求数列{(1+n)n/2}的前n项和
而(1+n)n/2=n/2+n²/2
所以
S=1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+...+n)
=1/2+1²/2+2/2+2²/2+3/2+3²/2+…+n/2+n²/2
=(1+2+3+…+n)/2+(1²+2²+3²+…+n²)/2
=(1+n)n/4+n(n+1)(2n+1)/12
=n(n+1)(2n+4)/12
=n(n+1)(n+2)/6
满意请采纳