1×2+2×3+3×4+…………+99×100详细点

2024-12-05 07:50:23
推荐回答(3个)
回答1:

an=n(n+1)求和
an=n^2+n
有1+2^2+3^2+4^2+..........+n^2=n(n+1)(2n+1)/6
1+2+3+........+n=n(n+1)/2
有an的和为Tn=n(n+1)(2n+1)/6 +n(n+1)/2
带入n=99
T(99)=333300

回答2:

解:1×2+2×3+3×4+…+99×100
=(12+1)+(22+2)+(32+3)+…+(992+99)
=(12+22+32+…+992)+(1+2+3+…+99)
= 99(99+1)(2×99+1)/6+ 99×(99+1)/2
=333300

回答3:

12