α为锐角,tanα=1⼀2,求(sin2αcosα-sinα)⼀(sin2αcos2α )的值 要有过程

2024-12-03 21:44:28
推荐回答(5个)
回答1:

tan²α=(1-cos²α)/cos²α=1/4
cos²α=4/5
∵α为锐角
∴cosα=2√5/5
原式=(2sinαcosαcosα-sinα)/2sinαcosαcos2α
=(2cos²α-1)/2cosαcos2α
=cos2α/2cosαcos2α
=1/2cosα
=√5/4

回答2:

α为锐角,tanα=1/2 =>sinα=cosα/2
(sinα)^2+(cosα)^2=1 =>sinα=1/根号5 cosα=2/根号5
=>sin2α=2sinαcosα=4/5 cos2a=1-2(sinα)^2=3/5
=>(sin2αcosα-sinα)/(sin2αcos2α )=(4/5*2/根号5-1/根号5)/(4/5*3/5)=根号5/4

回答3:

由cos²a=1/(1+tan²) 解得cosa=2/(5^½)
(sin2acosa-sina)/(sin2acos2a)=(2sinacos²a-sina)/(sinacosacos2a/2)
=sina(2cos²a-1)/(sinacosacos2a/2)
=sinacos2a/(sinacosacos2a/2)
=2/cosa
=5^½ ﹍﹍﹍根号5

回答4:

解:(sin2αcosα-sinα)/(sin2αcos2α )=(2sinαcosαcosα-sinα)/(sin2αcos2α )=sinα(2cosαcosα-1)/(sin2αcos2α )=sinαcos2α /(sin2αcos2α )=sinα /2sinαcosα=1/2cosα
tanα=1/2 则算出cosα=2/√5 则1/2cosα=√5 /4

回答5:

八分之五倍根号五