令g(x)=f`(x)+xf`(-x)=x
则g(-x)=f`(-x)-xf`(x)=-x
两个式子联立求解得
f'(x)=(x²+x)/(x²+1)=[x²/(x²+1)]+[x/(x²+1)]=1-[1/(x²+1)]+[x/(x²+1)]=
两边积分
得 f(x)=∫[x²/(x²+1)]dx+∫[x/(x²+1)]dx=-∫[1/(x²+1)]dx+∫dx+1/2∫[1/(x²+1)]dx²=-arctanx+x+1/2 ln(1+x²)+c
1/2 ln(1+x^2)+x-arctanx+c