y"+pyˊ+qy=0 为二阶常系数齐次线性微分方程,它的特征方程为r²+pr+q=0,当特征方程有两个不等的实根,微分方程的通解为y=C1e^rix+C2e^r2x.对比所给出通解可知r_1=2,r_2=3,代入特征方程即可求得p=-5,q=6,所求微分方程为y"-5yˊ+6y=0
所以特征方程的两根 为 2和3方程为 y'' -5y' +6y =0