当n=1时,左边=1^2=1
右边=1*(1+1)*(2+1)/6=1
相符;
设n=k时成立
即:1^2+2^2+…+k^2=k(k+1)(2k+1)/6
则1^2+2^2+…+k^2+(k+1)^2=k(k+1)(2k+1)/6+(k^2+2k+1)
=(2k^3+3k^2+k+6k^2+12k+6)/6
=(k+1)(k+2)(2k+3)/6
=(k+1)[(k+1)+1][2(k+1)+1]/6
即n=k+1时也成立,所以原题得证。
当n=1时 左边=1 右边=1*2*3/6=1 左边=右边 等式成立
设当n=k-1时等式成立 即1^2+2^2+……+(k-1)^2=k*(k-1)(2k-1))/6
所以当n=k时1^2+2^2+……+(k-1)^2+k^2=(k*(k-1)(2k-1))/6+k^2=(k*(2k^2-3k+1))/6+6k^2/6
=(k*(2k^2-3k+1+6k))/6=(k*(2k^2+3k+1))/6=k*(k+1)(2k+1)/6=右边
所以等式成立^_^