如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运

2024-12-02 04:47:47
推荐回答(1个)
回答1:

解:(1)AC=4,AD=3,⊙O的半径长为1.
(如图1,连接AO、DO.设⊙O的半径为r.
在Rt△ABC中,由勾股定理得AC=

AB2?BC2
=4,
则⊙O的半径r=
1
2
(AC+BC-AB)=
1
2
(4+3-5)=1;
∵CE、CF是⊙O的切线,∠ACB=90°,
∴∠CFO=∠FCE=∠CEO=90°,CF=CE,
∴四边形CEOF是正方形,
∴CF=OF=1;
又∵AD、AF是⊙O的切线,
∴AF=AD;
∴AF=AC-CF=AC-OF=4-1=3,即AD=3);

(2)①如图1,若点P在线段AC上时.
在Rt△ABC中,AB=5,AC=4,BC=3,
∵∠C=90°,PH⊥AB,
∴∠C=∠PHA=90°,
∵∠A=∠A,
∴△AHP∽△ACB,
PH
BC 
=
AP
AB 
=
AC?PC
AB 

x
3
=
4?y
5

∴y=-
5
3
x+4,即y与x的函数关系式是y=-
5
3
x+4(0≤x≤2.4);
②同理,当点P在线段AC的延长线上时,△AHP∽△ACB,
PH
BC 
=
AP
AB 
=
AC+PC
AB 

x
3
=
4+y
5

∴y=
5
3
x-4,即y与x的函数关系式是y=
5
3
x-4(x>2.4);

(3)①当点P在线段AC上时,如图2,P′H′与⊙O相切.
∵∠OMH′=∠MH′D=∠H′DO=90°,OM=OD,
∴四边形OMH′D是正方形,
∴MH′=OM=1;
由(1)知,四边形CFOE是正方形,
CF=OF=1,
∴P′H′=P′M+MH′=P′F+FC=P′C,即x=y;
又由(2)知,y=-
5
3
x+4,
∴y=-
5
3
x+4,
解得y=
3
2

②当点P在AC的延长线上时,如图,P″H″与⊙O相切.此时y=1.