已知a大于0,b大于0,a+b=2,则y=1⼀a+4⼀b的最小值为多少?

2024-11-23 09:29:49
推荐回答(3个)
回答1:

y=1/a +4/b
=[(a+b)/2]/a +2(a+b)/b
=(a+b)/(2a)+(2a+2b)/b
=b/(2a)+ 1/2 +2a/b +2
=b/(2a) +(2a)/b +5/2
a>0 b>0,由均值不等式得:当b/(2a)=(2a/b)时,即b/(2a)=(2a)/b=1时,b/(2a)+(2a)/b有最小值2
此时y有最小值2+5/2=9/2

回答2:

把a+b=2代入,得,y=1/a+4/b
=(a+b)/2a+2(a+b)/b
=1/2+b/2a+2+2a/b
=5/2+b/2a+2a/b
≥5/2+2×根下b/2a×2a/b
=9/2 ,当且仅当b²=4a²取到

回答3:

把a+b=2代入,得,y=1/a+4/b
=(a+b)/2a+2(a+b)/b
=1/2+b/2a+2+2a/b
=5/2+b/2a+2a/b
≥5/2+2×根下b/2a×2a/b
=9/2 ,当且仅当b²=4a²取到。