零初始状态:动态元件初始储能为零。零输入:在没有外加激励时,仅由t=0时刻的非零初始状态引起的响应。取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
一阶电路仅有一个动态元件(电容或电感),如果在换路的瞬间动态元件已储存有能量(电能或磁能),那么即使电路中无加激励电源,换路后,电路中的动态元件将通过电路放电,在电路中也会产生响应(电流或电压),即零输入响应。
对于一阶电路,零输入响应是仅由储能元件初始储能引起的响应。
简介
系统的响应除了激励所引起外,系统内部的“初始状态”也可以引起系统的响应。在“连续”系统下,系统的初始状态往往由其内部的“储能元件”所提供,例如电路中电容器可以储藏电场能量,电感线圈可以储存磁场能量等。这些储能元件在开始计算时间时所存储的能量状态就构成了系统的初始状态。
如果系统的激励为零,仅由初始状态引起的响应就被称之为该系统的“零输入响应”。一个充好电的电容器通过电阻放电,是系统零输入响应的一个最简单的实例。系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。
当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。假定系统的内部不含有电源,那么这种系统就被称为“无源系统”。实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零输入响应是系统微分方程齐次解的一部分。
非线性系统的稳定性及零输入响应的性质不仅取决于系统本身的结构和参数,而且还与系统的初始状态有关。
零状态响应:电路的储能元器件(电容、电感类元件)无初始储能,仅由外部激励作用而产生的响应。 在一些有初始储能的电路中,为求解方便,也可以假设电路无初始储能,求出其零状态响应,再和电路的零输入响应相加既得电路的全响应。 在求零状态响应时,一般可以先根据电路的元器件特性(电容电压、电感电流等),利用基尔霍夫定律列出电路的关系式,然后装换出电路的微分方程;利用微分方程写出系统的特征方程,利用其特征根从而可以求解出系统的自由响应方程的形式;零状态响应由部分自由响应和强迫响应组成,其自由响应部分与所求得得方程具有相同的形式,再加上所求的特接便得系统的零状态响应形式。可以使用冲激函数系数匹配法求解。