设函数z=f(x,y)在点(1,1)可微,且f(1,1)=1,fx′(1,1)=2,fy′(1,1)=3,φ(x)=f(x,f

2024-11-29 01:43:04
推荐回答(1个)
回答1:

因为φ(x)=f(x,f(x,x)),
所以,

dx
=fx′+fy′(fx′+fy′),
从而,
d
dx
φ3(x)
=3φ2(x)
d
dx
φ(x)

=3φ2(x)(fx′+fy′(fx′+fy′)).
代入x=1,可得:
d
dx
φ3(x)|x=1
=3f2(1,f(1,1))(fx′(1,f(1,1))+fy′(1,f(1,1))(fx′(1,1)+fy′(1,1)))
=3f2(1,1)(fx′(1,1)+fy′(1,1)(fx′(1,1)+fy′(1,1)))
=3×(2+3×(2+3))
=51.