用到的公式为重要极限定理
lim n→∞ (1+ 1/n)^n =e
(1)
(x-1)/(x+1)=(x+1-2)/(x+1)=1 -2/(x+1)=1 -1/[(x+1)/2]
原式=lim {1 -1/[(x+1)/2]}^x
令-(x+1)/2=t
x=-2t-1
原式=lim (1+ 1/t)^(-2t-1)
=lim (1+ 1/t)^(-2t) * (1+ 1/t)^(-1)
=e^(-2) * 1
=e^(-2)
(2)
x/(x-c)=(x-c+c)/(x-c)=1+ c/(x-c)=1+ 1/[(x-c)/c]
原式=lim {1 +1/[(x-c)/c]}^x
令(x-c)/c=t
x=ct+c
原式=lim (1+ 1/t)^(ct+c)
=lim (1+ 1/t)^(ct) * (1+ 1/t)^c
=e^c * 1
=e^c
得e^c=2
c=ln2