(2)
lim(n->∞) [√(n+1) -√n]
=lim(n->∞) [(n+1) -n]/[√(n+1) +√n]
=lim(n->∞) 1/[√(n+1) +√n]
=0
(2.1)
lim(n->∞) [ 2^(n-1)+3^(n+1)] /[ 2^n+3^(n+1)]
分子分母同时除以 3^(n+1)]
=lim(n->∞) [ (1/4)(2/3)^(n+1)]+1] /[(1/2)(2/3)^(n+1) +1]
=(0+1)/(0+1)
=1
(3)
lim(n->∞) (n-1)(2n+2)(3n+3)/n^3
分子分母同时除以 n^3
=lim(n->∞) (1-1/n)(2+2/n)(3+3/n)
=6