矩阵等价指的是矩阵,不是方程组
方程组等价是指方程组的解相同
这是两个不同的概念
矩阵等价有两个意思
1、其中一者能够经过若干次变成另一者。
2、它们有相同的秩,也就是初等变换不改变矩阵的秩。
所以,你写的两个方程组,系数构成的矩阵是等价的,
但两个方程组不是等价的。
一个矩阵经过有限次初等变换后变成另一个矩阵,称这两个矩阵等价。一个矩阵通过不同的初等变换可以得到不同的矩阵,所有的这些矩阵构成一个集合,集合中的所有元素(矩阵)都满足这样一个关系:任一元素经过有限次初等变换可以变成另一个元素。把这种关系定义成元素之间的等价。所以说等价其实是一种关系。
考研老学长告诉你哈,
不等价啊,你算下xy值都不一样了。初等变换前后秩是不变的,但模值(行列式)可能改变。
矩阵初等变换等价于给矩阵左乘或右乘一个初等矩阵,变换后行列式|P||A|不一定等于|A|,只有一种情况|P|=1时,|P||A|=|A|,即对矩阵A进行了倍加变换(左或者右乘了一个倍加初等矩阵。翻书看看倍加初等矩阵是一个三角矩阵,行列式等于主对角线元素乘积,为1)。
初等变换实际上就是在求逆矩阵、求秩、解方程。
挖坟了哈哈,如推荐所言,除了求秩可以用列或者行变换,其他情况只能用行变换,否则矩阵表征的方程组不等价。