奇函数与偶函数各自的性质是什么?

2025-04-14 03:13:19
推荐回答(2个)
回答1:

奇函数和偶函数的性质是:

1、两个奇函数相加所得的和或相减所得的差为奇函数。

2、两个奇函数相乘所得的积或相除所得的商为偶函数。

3、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

4、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

5、当且仅当f(x)=0(定义域关于原点对称)时,f(x)既是奇函数又是偶函数。奇函数在对称区间上的积分为零。

扩展资料:

1、奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。

2、如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数(Even Function)。

3、函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

4、函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。

5、在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

参考资料:百度百科_奇函数  百度百科_偶函数  百度百科_函数

回答2:

奇函数:
1、在奇函数f(x)中,f(x)和f(-x)的符号相反且绝对值相等,即f(-x)=-f(x),反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。例如:f(x)=x^(2n-1),n∈Z;(f(x)等于x的2n-1次方,n属于整数)

2、奇函数图象关于原点(0,0)中心对称。
3、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。
4、若F(X)为奇函数,定义域中含有0,则F(0)=0.
图1为 奇函数
相关函数:偶函数,非奇非偶函数
5、设f(x)在I上可导,若f(x)在I上为奇函数,则f'(x)在I上为偶函数。
即f(x)=-f(-x)对其求导f'(x)=[-f(-x)]'(-x)'=-f'(-x)(-1)=f'(-x)

偶函数:
1、图象关于y轴对称
2、满足f(-x) = f(x)
3、关于原点对称的区间上单调性相反
4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0
5、定义域关于原点对称(奇偶函数共有的)