统计学中拟合优度R平方 能不能用于非线性方程(是曲线不是直线)与试验值(也为曲线)的拟合程度的判断?

2024-12-02 19:08:26
推荐回答(1个)
回答1:

R平方:决定系数,反应因变量的全部变异能通过回归关系被自变量解释的比例。如R平方为0.8,则表示回归关系可以解释因变量80%的变异。换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%
1,在统计学中,R平方值的计算方法如下:
R平方值=回归平方和(ssreg)/总平方和(sstotal)
其中回归平方和=总平方和-残差平方和(ssresid)
2,以上几个名词解释如下:

总平方和:Const参数为True的情况下,总平方和=y的实际值与平均值的平方差之和;Const参数为False的情况下,总平方和=y的实际值的平方和。
残差平方和:残差平方和=y的估计值与y的实际值的平方差之和。
3,在线性回归分析中,可以使用RSQ函数计算R平方值。

RSQ函数语法为RSQ(known_y's,known_x's)
将源数据中的y轴数据和x轴数据分别代入,就可以求得其“线性”趋势线的R平方值。
4,R^2的特点:

(1)可决系数是非负的统计量
(2)可决系数的取值范围:0<=R^2<=1
(3)可决系数是样本观测值的函数,可决系数R^2是随机抽样而变动的随机变量。为此,对可决系数的统计可靠性也应进行检验。