已知等差数列{a n }的公差d≠0,它的前n项和为S n ,若S 5 =70,且a 2 ,a 7 ,a 22 成等比数列.(1)求

2025-01-19 11:56:20
推荐回答(1个)
回答1:

(1)∵数列{a n }是等差数列,
∴a n =a 1 +(n-1)d,S n =na 1 +
n(n-1)
2
d
.…(1分)
依题意,有
S 5 =70
a 7 2 = a 2 a 22
5 a 1 +10d=70
( a 1 +6d ) 2 =( a 1 +d)( a 1 +21d).
…(3分)
解得a 1 =6,d=4.…(5分)
∴数列{a n }的通项公式为a n =4n+2(n∈N * ).…(6分)
(2)证明:由(1)可得S n =2n 2 +4n.…(7分)
1
S n
=
1
2 n 2 +4n
=
1
2n(n+2)
=
1
4
1
n
-
1
n+2
).…(8分)
∴T n =
1
S 1
+
1
S 2
+
1
S 3
+…+
1
S n-1
+
1
S n

=
1
4
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]…(9分)
=
1
4
(1+
1
2
-
1
n+1
-
1
n+2

=
3
8
-
1
4
1
n+1
+
1
n+2
).…(10分)
∵T n -
3
8
=-
1
4
1
n+1
+
1
n+2
)<0,
∴T n
3
8
.…(11分)
∵T n+1 -T n =
1
4
1
n+1
-
1
n+3
)>0,所以数列{T n }是递增数列.…(12分)
∴T n ≥T 1 =
1
6
.…(13分)
1
6
≤T n
3
8
.…(14分)