数学日记~

2024-12-03 01:25:27
推荐回答(5个)
回答1:

2月10日 星期三 晴

利用除法来比较分数的大小
今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。

2月12日 星期五晴

今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做。”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来。但是我并没灰心,继续做了下去,我做了出来。
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积。
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面。
列算式是628×6-628×3.14÷4×2+628×3.14

--
2月14日 星期六 晴

今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起。我跑过去一年,原来是抓奖游戏。“哼,抓奖有什么好玩的。”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了。”我急切地问:“是什么呀!”“50元钱。”那人噔大眼睛说。一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试。”说完,我便问店主怎么抓法。店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖。”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主。
尽管,这可以抓10次,但那份大奖我还是没有拿到。
回到家之后,我想了想,感觉有点不对劲。我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱。但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱。
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪了。

--
2月16日 星期一晴

题目:有粗细不同的两枝蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时。有次停电,将这样的两枝求用过的蜡烛同时点燃,来电时,发现两枝蜡烛所剩的长度一样,问停电多长时间?
解题思路:如高粗蜡烛长为1,燃烧的速度分别为:(1)1÷2=1/2(2)2÷1=2要设停电时间为X小时那么式子就是:1—1/2X=2—2X分析已知细蜡烛占粗蜡烛的1/2,粗蜡烛就是细蜡烛的2倍,求停电多少小时,也就是第一根燃烧多少时。
解:设停电时间为X小时。
1—1/2X=2—2X
X=2/3
答:停电时间为2/3小时。

--
2月18日星期三晴

今天下午,我在《小学生双色课课通》上看到了这样一道题。
一个圆锥底面半径是8分米,高的长度与底面半径的比3:2,这个圆锥的体积是多少立方分米?
分析:这是一道按比例分配的应用题与圆锥方面的题相结合的应用题。求圆锥的体积是多少,要知道圆锥的底面积和高,题中告诉了底面半径,可求出底面积,而高却不知道,可以根据一个条件求出,可将比转化成一个数占已知数的几分之几,即可知道高占底面半径的3/2。算出高后,然后根据“V=SH÷3”算出圆锥的体积。

回答2:

6月10日 星期二 晴
今天中午,我去餐馆买了一份盒饭,并特意要了几双一次性筷子准备做实验。
一回到家,想到可以做实验了,心情真有点激动,但又夹杂着几丝恐慌,我可不想让第一个方案刚一出炉就遭到淘汰。为了验证实验方案是否正确,我专门测量了筷子的长度(20厘米)、厚度(0.35厘米)和两端的宽度(分别为1.6厘米、0.8厘米)。由于一次性筷子近似于梯形体,我便利用梯形体的体积计算公式来计算筷子的体积,由计算结果可知,一次性筷子体积大约为8.4立方厘米。如果实验测得的结果和我所计算的结果近似的话,那么就说明我的实验是成功的,否则,我就得另想办法。刚准备动手实验,一看实验用具还不够,所以只好等到明天了。

6月11日 星期三 晴

盼望的时刻总算到了,一放学,一路小跑地回到家里,放下书包后,我就迫不及待地拿起爸爸从单位借来的烧杯。接满水后,小心翼翼地将烧杯放在盆子里,确保烧杯中的水不漏撒。接着,我用小刀在筷子上刻了一道痕迹,把筷子分成了两部分,这一道痕迹就是筷子两部分的分界线,我准备分两次来测量筷子的体积。
实验开始了,我紧张极了,心嘣嘣地跳,我拿筷子的手也不时发抖了,但我尽量克制住这种激动的情绪。我将筷子缓缓插入烧杯里,尽量不让筷子晃动,否则溢出来的水就太多了,测定结果就会不准确。当第一次将筷子的一部分插入烧杯中后,看到烧杯中的一些水溢到了盆里。烧杯再装满水后,又将筷子的另一部分插入其中。最后,我将两次溢到盆里的水倒入另一有刻度的烧杯中,这样就得到了筷子的体积。
结果,我失败了。实验测得的筷子体积只有3立方厘米,跟我计算的筷子体积相差甚远。起初,我还有些不相信,经过反复思考,我终于明白了失败的原因。原来是因为烧杯的口径太大了,即使烧杯没有装满水,人的视觉也会看成是装满的,加之筷子的体积又太小,且烧杯的刻度又过大,导致了实验结果的偏差。因此,我得改进改进实验方法才行。相信我会成功的,不是说失败是成功之母吗?
6月12日 星期四 晴
自从第一次实验失败后,我就捉摸改进的方法,可是就是想不到一种简单可行的办法。这天中午,爸爸,妈妈有事没有做饭,于是我们决定到外面吃饭。
到餐馆点了菜后,妈妈为了不让我等烦,特地点了一杯果汁。果汁一上来,我就大口吸了几下,妈妈害怕我将果汁喝完,没有胃口吃饭,便叫我少喝果汁。菜还没有上,我觉得自己无所事事,便想到了吹泡泡,于是我就把果汁瓶里的吸管拿起来,对准水面吹了几口气,水面就起了几个泡泡,瞬间,我想到刚才我拿杯子里的吸管时,水面下降了一点,我突然有了办法,快乐极了,食欲大增,今天吃了好几碗米饭,还嫌不够

6月13日 星期五 晴
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。

回答3:

我的发现
同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。
如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗?
同样的发现我还有:一个数乘1.5只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了!
我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。
这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。
同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!

谈谈对零的认识

零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多。在数学中零非常特殊,不管做什么题,你应该考虑零。
在几何中,“0”经常被作为记号。
“0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数。“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数。零作被除数,不管除以什么数(“0”除外)都得零。
往往我们会忽视零,但它却起着重要的责任。如,问等于几?有些人就不能联想到“0”。在数数时,有人就会忘掉零。如:不大于5不小于-5的整数有几个?有人就会定有8个。其实还有0。如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数)。
零在生活中更量五彩斑斓。在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴。但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了。在比赛中,谁都不希望得到“0”。
零是丰富的。我认为零在题中是陷井,大家以后做题时应考虑零。零在不同的场合也能使人的情绪改变。它是美妙而又丰富的。
对0的认识
0是一个奇妙的数字,又是一个中学生经常遇见的“老朋友”了,计算,概念,都要遇见。
首先,0表示什么也没有,简直可称得上是数字里面的“沙漠”,0也是一个奇怪的数字,放在体积、面积、重量、速度、路程等所有单位里面,都表示没有,以表示时间、一个人的年龄、赛跑的刚开始、起点。
在数学王国数字库自然数里面,以有0的身影,它当然是最小的。没有0,便没有一毓的自然数,因为0是自然数的起点。
在计算里,0乘以任何一个数,包括负数、分数、0都,0的绝对值也等于0,在有理数中,它的绝对值是最小的,0除以任何一个数都,0加上一个数,仍得那个数,如:0+1=1,0+1.8375=1.8375。0减去一个数,得那个数的相反数,如:0-1=-1,0-87=-87。
在数轴中,0为原点,也为边界线,把正负两大数分开,0为什么奇妙呢?因为0既不是正数,也不是负数,它只是一个整数,当0和正数在一起时,叫非负数,和负数在一起时,叫非正数,数轴上,0又为我们判断正负数大小时提供了极大的方便,右边为正数,左边为负数,右边的数始终比左边大,说明正数大于负数,0大于负数,却小于正数。
在几何中,0度角表示一条射线,它并没有角,也没有度数,0平方米,表示没有面积,0米长,表示没有高度。0斤重,表示没有质量,0立方米,表示没有体积。
在地形中,0表示海平面,0以上表示高出海平面,0以下表示低于海平面,中国新疆有一155米的盆地,它是低于海平面155米,中国西藏有8848米的珠峰,它高于海平面8848米。

今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气

回答4:

到底什么是数学日记?你最好说清楚。
我先给你贴一个别人的。

数学日记

1月24日 周二

今天中午,我正在做数学题。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:

有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。

我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊!

正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条

棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。

最后,我得到了结果,为374立方厘米。我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)

后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。

解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
六年六班
易毅

回答5:

8月6日 周六

今天晚上,我看见一道会迷惑人的数学题,题目:37个同学要渡河,渡口有一只能乘上5人的空小船,他们要全部渡过河,至少要使用这只小船多少次?

粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人。这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟。

数学日记三

8月9日 周二

傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥。请问:果园里有苹果树和梨树各多少棵?

我没有被这道题吓倒,难题能激发我的兴趣。我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥。而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥。一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵。这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法。

数学日记四

8月11日 周四

今天我又遇到一道数学难题,费了好大的劲才解出来。题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等。两棵树上原来各有几只小鸟?

我一看完题目,就知道这是还原问题,于是用还原问题的方法解。可验算时却发现错了。我便更加认真地重新做起来。我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只。算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案为:甲树16只,乙树14只。

通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错。