正态分布的规律,均值X服从N(u,(σ^2)/n)。
因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2)。
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n
均值是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
扩展资料:
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
参考资料来源:百度百科--正态分布
参考资料来源:百度百科--样本均值
正态分布的规律,均值X服从N(u,(σ^2)/n)
因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2).
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n