z=y/[f(x²-y²)→f=y/z
令x²-y²=u
∂z/∂x=-y∂f/∂u·2x/f²=-2xy(∂f/∂u)/f²
∂z/∂y=[f-y·∂f/∂u·(-2y)/[f²]=(f+2y²·∂f/∂u)/f²
∴1/x·∂z/∂x=-2y∂f/∂u/f²
1/y·∂z/∂x=1/fy+2y∂f/∂u/f²
1/x·∂z/∂x+1/y·∂z/∂x=1/fy=1/(y/z)·y=z/y²
解:
∂z/∂x
=-yf'·2x/f²
=-2xyf'/f²
∂z/∂y
=[f - y·f'·(-2y)]/f²
(1/x)·(∂z/∂x)+(1/y)·(∂z/∂y)
=(-2yf'/f²)+[(f/y) +2yf']/f²
=1/yf
=y/y²·f
=z/y²