求不定积分∫sin2xcosxdx

2024-12-03 22:58:54
推荐回答(3个)
回答1:

3。求不定积分∫sin2xcosxdx
解:原式=2∫sinxcos²xdx=-2∫cos²xd(cosx)=-2[(1/3)cos³x]+C=-(2/3)cos³x+C
4。求定积分【0,1】∫{[arcsin(√x)]/√[x(1-x)]}dx
解:令arcsin(√x)=u,则√x=sinu,x=sin²u,dx=2sinucosudu;x=0时u=0;x=1时u=π/2;
故原式=【0,π/2】∫2usinucosudu/√[sin²u(1-sin²u)]=【0,π/2】∫2usinucosudu/(sinucosu)=【0,π/2】2∫udu=2(u²/2)【0,π/2】=π²/4.

回答2:

因为sin2x = 2sinxcosx;
∫sin2xcosxdx = ∫2sinxcosxcosxdx = -2∫cosx^2dcosx = -2/3∫cosx^3

回答3:

∫sin2xcosxdx
=∫2cosxsinxcosxdx
=-2∫cosxcosxdcosx
=-(2/3)(cosx)^3十C