cos(a-b⼀2)=-1⼀9, sin(a⼀2-b)=2⼀3,且90°〈a〈180°,0<b<90°求cos(a+b)的值

2024-11-22 02:13:58
推荐回答(2个)
回答1:

已知0解 由cos(a-b/2)=-1/9,sin(a/2-b)=2/3,可求得:
sin(a-b/2)=(4√5)/9,cos(a/2-b)=(√5)/3.
sin[(a+b)/2]=sin(a-b/2)*cos(a/2-b)-sin(a/2-b)*cos(a-b/2)
=(4√5)*(√5)/(3*9)-(-1/9)*(2/3)=22/27
cos(a+b)=1-2[sin(a/2+b/2)]^2=-239/729。

回答2:

由题得: COS{(a-b/2)-(a/2-b)}=cos{(a+b)/2}=cos(a-b/2)*cos(a/2-b)+sin(a-b/2)*sin(a/2-b)=(-1/9)*(根号5/3)+(4倍根号5/9)*(2/3)=7倍根号5/27 由倍角公式得:COS(a+b)=2*cos^2{(a+b)/2}-1=- 239/729