椭圆轨道是普遍存在的一种天体之间相对运动所遵循的现象;根据牛顿运动定律,F=ma,即物体在受到外力的作用下,会在该受力方向上产生一个加速度,又根据万有引力定律,任何有质量的物体之间都会相互吸引,吸引力的大小取决于两个物体的质量和相隔距离F=GM1M2/R2。所以,比如,现在地球运动方向相对于太阳有个偏离速度,如果不存在万有引力,地球将逐渐远离太阳在宇宙中匀速直线运动;而正由于万有引力使得地球在太阳的方向有个加速度,地球就会往太阳的方向发生偏移并不停的改变速度大小和方向,使得地球绕太阳旋转;而一般情况,当一个物体靠近另外一个物体,是逐渐被捕获并逐渐增加吸引力的,所以越靠近吸引力越大,加速度和速度也越大,而速度越大,要改变物体的运动就越难(f=mv^2/r)所以除非达到绝对平衡,否则基本上不会成为标准的圆周运动;至于椭圆轨道根据运动速度和距离可以推算出椭圆方程。
这是第一部分
机械能守恒和角动量守恒。
1/2*m*v1*v1 - GMm/r1 = 1/2*m*v2*v2 - GMm/r2
m*v1*r1 = m*v2*r2
v1,v2,r1,r2已知两个就可以求另外两个。
-------------------------------
力学方程对于求解天体运动的速度等情况并没有用。你仍然可以用牛顿力学中万有引力提供向心力列方程,这个方程对于求速度没有多大用处,一般的天体运动由上面两个方程求解就可以了。但对于证明你问的天体运动是椭圆轨道和中心天体在椭圆的焦点上还是有用的。以下的证明希望我写得简单易懂(一般用大写表示矢量,用小写表示对应的标量,G和a除外),也有可能有错误哦:)
有太阳地球体系来说,比如万有引力提供向心力:
F = - GMm/|R|^2 * R/|R| = m * a
其中的 R 和 a 都是矢量,R 表示有太阳中心指向地球中心的径矢量,a 是向心加速度。|R|在这里当标量用,即 R 的大小记为 r。由于万有引力和R 方向相反,所以为负值。
这样 a = - GM/r^2 * R/r
由此可知加速度 a 的方向始终指向太阳。
所以 R 叉乘 a = 0
又由 R 对时间 t 的一次微分是速度 V ,R 对时间 t 的二次微分是加速度 a ,很容易得到 d ( R 叉乘 V ) / dt = 0,即 R 叉乘 V = 常数C。
这说明 R 和 V 是在和 C 垂直的平面上,即地球应该在一个过太阳中心且垂直于 C 的平面内运动。
以上是证明地球运动是平面运动,然后再证明轨迹是椭圆。
(上面还都挺好懂的吧,下面的就比较麻烦了哦:))
以太阳为中心引入极坐标和直角坐标系,设地球在点 P (R,sita)
此时速度 V = dR/dt,加速度 a = dV/dt
为方便矢量计算,引入两个单位矢量Ur,Us。Ur是R方向的单位矢量,Us是垂直于R方向的单位矢量,即:
Ur = cos(sita)*i + sin(sita)*j
Us = -sin(sita)*i + cos(sita)*j
i和j可以看成分别是直角坐标XY轴的单位向量。sita是角度。
可以发现 d Ur / d sita = Us d Us / d sita = - Ur
学过椭圆吗?
椭圆的定义:
平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)。
X^2除以a^2 + Y^2除以b^2 =1 (a>b>0)
因为天体围绕的那个中心天体也在运动.如果他是圆的除非那个天体静止不动.