f(x)=1/2*(1-cos2x)+sin2x+3/2*(1+cos2x)+m=2+cos2x+sin2x+m=2+根号2*cos(2x-π/4)+m
因为最大值为根号2-1,所以2+m=-1,m=-3
周期T=2π/2=π,单调増区间:-π+2kπ<2x-π/4<π+2kπ,即kπ
解:f(x)= sin ² x + 2 sin x cos x + 3 cos ² x + m
= (sin ² x + cos ² x)+ sin 2x + 2 cos ² x - 1 + 1 + m
= 1 + sin 2x + cos 2x + 1 + m
= √2【(√2 / 2)sin 2x +(√2 / 2)cos 2x 】 + m + 2
= √2 (sin 2x cos π / 4 + sin π / 4 cos 2x ) + m + 2
= √2 sin(2 x + π / 4)+ m + 2
∵ f(x)最大值是 √2 - 1
又∵ sin(2 x + π / 4)最大值是 1
∴ √2 + m + 2 = √2 - 1
m + 2 = - 1
m = - 3
∴ f(x)的周期为:T = 2 π / ω
= 2 π / 2
= π
单调增区间为:【 k π - 3 π / 8 , k π + π / 8 】