不是 必须是齐次式 也就是说数列项之间是线性关系
a(n+2)+ m.a(n+1) + n.an =0
The aux. equation
x^2+mx+n=0
if x1,x2 are roots of equation x^2+mx+n=0
case 1: x1≠x2
an = A(x1)^n +B(x2)^n
e.g
a1 =1, a2 =4
a(n+2) - 3a(n+1) + 2an =0
x1=1, x2=2
an = A(1)^n +B(2)^n
a1 = A+B =1
a2 = A+2B =4
=> A=-2, B =3
an = (-2)(1)^n + 3(2^n)
=-2 +3.2^n
case 2: x1=x2
an = (A+Bn)(x1)^n
e.g
a1=1 , a2=1
a(n+2) - 4a(n+1) + 4an =0
The aux. equation
x^2-4x+4 =0
x=2
an = (A+Bn)2^n
a1 = 2A+2B=1 (1)
a2 = 4A +8B =1 (2)
B= -1/4
A= 3/4
an = [3/4-(1/4)n ].2^n
不是。数列通项没有通法可求。特征根法只适用于齐次线性递推式。
而且,很多时候通项你求不出,只能用递归式表示数列。