这里有啊
步进电机
Stepping Motor
A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. The motor's position can be controlled precisely, without any feedback mechanism (see open loop control). Stepper motors are similar to switched reluctance motors, which are very large stepping motors with a reduced pole count, and generally are closed-loop commutated.
Fundamentals of operation
Stepper motors operate much differently from normal DC motors, which rotate when voltage is applied to their terminals. Stepper motors, on the other hand, effectively have multiple "toothed" electromagnets arranged around a central gear-shaped piece of iron. The electromagnets are energized by an external control circuit, such as a microcontroller. To make the motor shaft turn, first one electromagnet is given power, which makes the gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's teeth are thus aligned to the first electromagnet, they are slightly offset from the next electromagnet. So when the next electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next one, and from there the process is repeated. Each of those slight rotations is called a "step." In that way, the motor can be turned a precise angle.
[edit] Stepper motor characteristics
Stepper motors are constant-power devices (power = angular velocity x torque). As motor speed increases, torque decreases. The torque curve may be extended by using current limiting drivers and increasing the driving voltage.
Steppers exhibit more vibration than other motor types, as the discrete step tends to snap the rotor from one position to another. This vibration can become very bad at some speeds and can cause the motor to lose torque. The effect can be mitigated by accelerating quickly through the problem speed range, physically damping the system, or using a micro-stepping driver. Motors with greater number of phases also exhibit smoother operation than those with fewer phases.
[edit] Open-loop versus closed-loop commutation
Steppers are generally commutated open loop, ie. the driver has no feedback on where the rotor actually is. Stepper motor systems must thus generally be over engineered, especially if the load inertia is high, or there is widely varying load, so that there is no possibility that the motor will lose steps. This has often caused the system designer to consider the trade-offs between a closely sized but expensive servo system and an oversized but relatively cheap stepper.
A new development in stepper control is to incorporate a rotor position feedback (eg. an encoder or resolver), so that the commutation can be made optimal for torque generation according to actual rotor position. This turns the stepper motor into a high pole count brushless servo motor, with exceptional low speed torque and position resolution. An advance on this technique is to normally run the motor in open loop mode, and only enter closed loop mode if the rotor position error becomes too large -- this will allow the system to avoid hunting or oscillating, a common servo problem.
[edit] Two-phase stepper motors
There are two basic winding arrangements for the electromagnetic coils in a two phase stepper motor: bipolar and unipolar.
[edit] Unipolar motors
A unipolar stepper motor has logically two windings per phase, one for each direction of current. Since in this arrangement a magnetic pole can be reversed without switching the direction of current, the commutation circuit can be made very simple (eg. a single transistor) for each winding. Typically, given a phase, one end of each winding is made common: giving three leads per phase and six leads for a typical two phase motor. Often, these two phase commons are internally joined, so the motor has only five leads.
A microcontroller or stepper motor controller can be used to activate the drive transistors in the right order, and this ease of operation makes unipolar motors popular with hobbyists; they are probably the cheapest way to get precise angular movements.
(For the experimenter, one way to distinguish common wire from a coil-end wire is by measuring the resistance. Resistance between common wire and coil-end wire is always half of what it is between coil-end and coil-end wires. This is due to the fact that there is actually twice the length of coil between the ends and only half from center (common wire) to the end.)
Unipolar stepper motors with six or eight wires may be driven using bipolar drivers by leaving the phase commons disconnected, and driving the two windings of each phase together. It is also possible to use a bipolar driver to drive only one winding of each phase, leaving half of the windings unused.
Unipolar stepper motor coils
[edit] Bipolar motor
Bipolar motors have logically a single winding per phase. The current in a winding needs to be reversed in order to reverse a magnetic pole, so the driving circuit must be more complicated, typically with an H-bridge arrangement. There are two leads per phase, none are common.
Static stictional effects using an H-bridge have been observed with certain drive topologies. See DuBord phenomenon.
Because windings are better utilised, they are more powerful than a unipolar motor of the same weight.
[edit] 8-lead stepper
An 8 lead stepper is wound like a unipolar stepper, but the leads are not joined to common internally to the motor. This kind of motor can be wired in several configurations:
Unipolar.
Bipolar with series windings. This gives higher inductance but lower current per winding.
Bipolar with parallel windings. This requires higher current but can perform better as the winding inductance is reduced.
Bipolar with a single winding per phase. This method will run the motor on only half the available windings, which will reduce the available low speed torque but require less current.
[edit] Higher-phase count stepper motors
Multi-phase stepper motors with many phases tend to have much lower levels of vibration, although the cost of manufacture is higher too.
[edit] Stepper motor drive circuits
Stepper motor performance is strongly dependent on the drive circuit. Torque curves may be extended to greater speeds if the stator poles can be reversed more quickly, the limiting factor being the winding inductance. To overcome the inductance and switch the windings quickly, one must increase the drive voltage. This leads further to the necessity of limiting the current that these high voltages may otherwise induce.
[edit] L/R drive circuits
L/R drive circuits are also referred to as constant voltage drives because a constant positive or negative voltage is applied to each winding to set the step positions. However, it is winding current, not voltage that applies torque to the stepper motor shaft. The current I in each winding is related to the applied voltage V by the winding inductance L and the winding resistance R. The resistance R determines the maximum current according to Ohm's law I=V/R. The inductance L determines the maximum rate of change of the current in the winding according to the formula for an Inductor dI/dt = V/L. Thus when controlled by an L/R drive, the maximum speed of a stepper motor is limited by its inductance since at some speed, the voltage V will be changing faster than the current I can keep up.
With an L/R drive it is possible to control a low voltage resistive motor with a higher voltage drive simply by adding an external resistor in series with each winding. This will waste power in the resistors, and generate heat. It is therefore considered a low performing option, albeit simple and cheap.
[edit] Chopper drive circuits
Chopper drive circuits are also referred to as constant current drives because they generate a somewhat constant current in each winding rather than applying a constant voltage. On each new step, a very high voltage is applied to the winding initially. This causes the current in the winding to rise quickly since dI/dt = V/L where V is very large. The current in each winding is monitored by the controller, usually by measuring the voltage across a small sense resistor in series with each winding. When the current exceeds a specified current limit, the voltage is turned off or "chopped", typically using power transistors. When the winding current drops below the specified limit, the voltage is turned on again. In this way, the current is held relatively constant for a particular step position. This requires additional electronics to sense winding currents, and control the switching, but it allows stepper motors to be driven with higher torque at higher speeds than L/R drives. Integrated electronics for this purpose are widely available. chopper converts dc to variable dc.
[edit] Phase current waveforms
A stepper motor is a polyphase AC synchronous motor (see Theory below), and it is ideally driven by sinusoidal current. A full step waveform is a gross approximation of a sinusoid, and is the reason why the motor exhibits so much vibration. Various drive techniques have been developed to better approximate a sinusoidal drive waveform: these are half stepping and microstepping.
[edit] Full step drive (two phases on)
This is the usual method for full step driving the motor. Both phases are always on. The motor will have full rated torque.
[edit] Wave drive
In this drive method only a single phase is activated at a time. It has the same number of steps as the full step drive, but the motor will have significantly less than rated torque. It is rarely used.
[edit] Half stepping
When half stepping, the drive alternates between two phases on and a single phase on. This increases the angular resolution, but the motor also has less torque at the half step position (where only a single phase is on). This may be mitigated by increasing the current in the active winding to compensate. The advantage of half stepping is that the drive electronics need not change to support it.
[edit] Microstepping
What is commonly referred to as microstepping is actual "sine cosine microstepping" in which the winding current approximates a sinusoidal AC waveform. Sine cosine microstepping is the most common form, but other waveforms are used [1]. Regardless of the waveform used, as the microsteps become smaller, motor operation becomes more smooth. However, the purpose of microstepping is not usually to achieve smoothness of motion, but to achieve higher position resolution. A microstep driver may split a full step into as many as 256 microsteps. A typical motor may have 200 steps per revolution. Using such a motor with a 256 microstep controller (also referred to as a "divide by 256" controller) results in an angular resolution of 360°/200/256 = 0.00703125° or 51200 discrete positions per revolution. However, it should be noted that such fine resolution is rarely achievable in practice, regardless of the controller, due to mechanical stiction and other sources of error between the specified and actual positions.
Step size repeatability is an important step motor feature and a fundamental reason for their use in positioning. Microstepping can affect the step size repeatability of the motor. Example: many modern hybrid step motors are rated such that the travel of every Full step (example 1.8 Degrees per Full step or 200 Full steps per revolution) will be within 3% or 5% of the travel of every other Full step; as long as the motor is operated with in its specified operating ranges. Several manufacturers show that their motors can easily maintain the 3% or 5% equality of step travel size as step size is reduced from Full stepping down to 1/10th stepping. Then, as the microstepping divisor number grows, step size repeatability degrades. At large step size reductions it is possible to issue many microstep commands before any motion occurs at all and then the motion can be a "jump" to a new position.
[edit] Theory
A step motor can be viewed as a synchronous AC motor with the number of poles (on both rotor and stator) increased, taking care that they have no common denominator. Additionally, soft magnetic material with many teeth on the rotor and stator cheaply multiplies the number of poles (reluctance motor). Modern steppers are of hybrid design, having both permanent magnets and soft iron cores.
To achieve full rated torque, the coils in a stepper motor must reach their full rated current during each step. Winding inductance and reverse EMF generated by a moving rotor tend to resist changes in drive current, so that as the motor speeds up, less and less time is spent at full current -- thus reducing motor torque. As speeds further increase, the current will not reach the rated value, and eventually the motor will cease to produce torque.
---------------
The term "wireless" has become a generic and all-encompassing word used to describe communications in which electromagnetic waves or RF (rather than some form of wire) carry a signal over part or the entire communication path. Common examples of wireless equipment in use today include:
Professional LMR (Land Mobile Radio) and SMR (Specialized Mobile Radio) typically used by business, industrial and Public Safety entities
Consumer Two Way Radio including FRS (Family Radio Service), GMRS (General Mobile Radio Service) and Citizens band ("CB") radios
The Amateur Radio Service (Ham radio)
Consumer and professional Marine VHF radios
Cellular telephones and pagers: provide connectivity for portable and mobile applications, both personal and business.
Global Positioning System (GPS): allows drivers of cars and trucks, captains of boats and ships, and pilots of aircraft to ascertain their location anywhere on earth.
Cordless computer peripherals: the cordless mouse is a common example; keyboards and printers can also be linked to a computer via wireless.
Cordless telephone sets: these are limited-range devices, not to be confused with cell phones.
Satellite television: allows viewers in almost any location to select from hundreds of channels.
Wireless networking (i.e. the various flavors of unlicensed 2.4 GHz WiFi devices) is used to meet a variety of needs. Perhaps the most common use is to connect laptop users who travel from location to location. Another common use is for mobile networks that connect via satellite. A wireless transmission method is a logical choice to network a LAN segment that must frequently change locations. The following situations justify the use of wireless technology:
To span a distance beyond the capabilities of typical cabling,
To avoid obstacles such as physical structures, EMI, or RFI,
To provide a backup communications link in case of normal network failure,
To link portable or temporary workstations,
To overcome situations where normal cabling is difficult or financially impractical, or
To remotely connect mobile users or networks.
Wireless communication may be via:
radio frequency communication,
microwave communication, for example long-range line-of-sight via highly directional antennas, or short-range communication, or
infrared (IR) short-range communication, for example from remote controls or via IRDA,
Applications may involve point-to-point communication, point-to-multipoint communication, broadcasting , cellular networks and other wireless networks.
The term "wireless" should not be confused with the term "cordless", which is generally used to refer to powered electrical or electronic devices that are able to operate from a portable power source (e.g., a battery pack) without any cable or cord to limit the mobility of the cordless device through a connection to the mains power supply. Some cordless devices, such as cordless telephones, are also wireless in the sense that information is transferred from the cordless telephone to the telephone's base unit via some type of wireless communications link. This has caused some disparity in the usage of the term "cordless", for example in Digital Enhanced Cordless Telecommunications.
In the last 50 years, wireless communications industry experienced drastic changes driven by many technology innovations.
[edit] History
Further information: History of radio
The term "Wireless" came into public use to refer to a radio receiver or transceiver (a dual purpose receiver and transmitter device), establishing its usage in the field of wireless telegraphy early on; now the term is used to describe modern wireless connections such as in cellular networks and wireless broadband Internet. It is also used in a general sense to refer to any type of operation that is implemented without the use of wires, such as "wireless remote control", "wireless energy transfer", etc. regardless of the specific technology (e.g., radio, infrared, ultrasonic, etc.) that is used to accomplish the operation.
[edit] Early wireless work
David E. Hughes, eight years before Hertz's experiments, induced electromagnetic waves in a signaling system. Hughes transmitted Morse code by an induction apparatus. In 1878, Hughes's induction transmission method utilized a "clockwork transmitter" to transmit signals. In 1885, T. A. Edison uses a vibrator magnet for induction transmission. In 1888, Edison deploys a system of signaling on the Lehigh Valley Railroad. In 1891, Edison attains the wireless patent for this method using inductance (U.S. Patent 465,971 ).
In the history of wireless technology, the demonstration of the theory of electromagnetic waves by Heinrich Rudolf Hertz in 1888 was important.[3][4] The theory of electromagnetic waves were predicted from the research of James Clerk Maxwell and Michael Faraday. Hertz demonstrated that electromagnetic waves could be transmitted and caused to travel through space at straight lines and that they were able to be received by an experimental apparatus.[3][4] The experiments were not followed up by Hertz and the practical applications of the wireless communication and remote control technology would be implemented by Nikola Tesla.
[edit] The electromagnetic spectrum
Light, colours, AM and FM radio, and electronic devices make use of the electromagnetic spectrum. In the US the frequencies that are available for use for communication are treated as a public resource and are regulated by the Federal Communications Commission. This determines which frequency ranges can be used for what purpose and by whom. In the absence of such control or alternative arrangements such as a privatized electromagnetic spectrum, chaos might result if, for example, airlines didn't have specific frequencies to work under and an amateur radio operator was interfering with the pilot's ability to land an airplane. Wireless communication spans the spectrum from 9 kHz to 300 GHz. (Also see Spectrum management)
[edit] Applications of wireless technology
[edit] Security systems
Wireless technology may supplement or replace hard wired implementations in security systems for homes or office buildings
[edit] Television remote control
Modern televisions use wireless (generally infrared) remote control units. Now we also use radio waves.
[edit] Cellular telephony (phones and modems)
Perhaps the best known example of wireless technology is the cellular telephone and modems. These instruments use radio waves to enable the operator to make phone calls from many locations world-wide. They can be used anywhere that there is a cellular telephone site to house the equipment that is required to transmit and receive the signal that is used to transfer both voice and data to and from these instruments.
已经找到,你留一下邮箱吧