大一高数求极限lim(n趋于无穷大)ln(1+1⼀n)(∑k=1到n)(n⼀2n+k)

2025-01-18 03:22:11
推荐回答(3个)
回答1:

极限lim(n趋于无穷大)ln(1+1/n)(∑k=1到n)(n/2n+k):

这道题用到了洛必达法则。两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。

扩展资料

求极限基本方法:


1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;


2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;


3、运用两个特别极限;


4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。


5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。


6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。


7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。


8、特殊情况下,化为积分计算。


9、其他极为特殊而不能普遍使用的方法。

回答2:

请见下图过程

回答3:

  1. lim(n->∞) ln(1+1/n) = ln1 = 0

  2. . . . . . .