分段函数f(x)={x^2+1,x>=0;=1,x<0}则满足不等式f(1-x^2)>f(2x)的x取值范围是?(答案...

2025-01-19 12:06:50
推荐回答(2个)
回答1:

观察法+分类讨论

观察:
显然当x>0时
x^2+1>0+1=1

而x<=0时
f(x)=1

所以一种可能是
1-x^2>0而且2x<=0
即-1-----------------------------------------
另一种可能是1-x^2,2x都在x>=0上
那么
f(1-x^2)>f(2x)
变为
(1-x^2)^2+1>(2x)^2+1
1-x^2>=0 ->-1<=x<=1
2x>=0 -> x>=0
联立可得
x^4-2x^2+2>4x^2+1
x^4-6x^2+1>0
x>=0
可得
x^2>3+2根号2或者x^2<3-2根号2

再开根,结合x>0
0或者x>根号2+1

和0<=x<=1相交得到
0
再和第一种情况合并可得
-1

回答2:

从函数的变量入手
当当x<0时,2x<0①
f(2x)=0只需1-x²>0 则f(1-x²)=(1-x²﹚²+1>1即 -1< x<1②
综合①②知 -1< x<0
当x≧0时③
因为f(x)=x²+1在[0,∞)上递增
只需1-x²>2x解得 -1-√2 <x<√2-1④
综合③④知 0 ≤ x<√2-1
综合两种情况知道满足条件x的取值范围为-1