e^(lnx)*sinx的微积分是什么?

2025-01-19 20:21:53
推荐回答(1个)
回答1:

∫(arctanx)^2/(1+x^2) dx
=∫(arctanx)^2 darctanx
=(arctanx)^3/3 + C
lim(x->0) (1/x - 1/(e^x-1)
=lim(x->0) (e^x-1-x)/(xe^x-x)
=lim(x->0) (e^x-1)/(xe^x+e^x-1) 【罗必塔法则】
=lim(x->0) (e^x/(xe^x+2e^x) 【罗必塔法则】
=1/2
∫[1/e ,e] |lnx|dx
=∫[1/e ,1] |lnx|dx +∫[1 ,e] |lnx|dx
=∫[1/e,1] -lnxdx +∫[1,e]lnxdx
=-∫[1/e,1] lnxdx +∫[1,e]lnxdx
=[-xlnx |[1/e ,1]+∫[1/e ,1]xdlnx] +[xlnx |[1 ,e]-∫[1/e ,1]xdlnx ]
=[-1/e+∫[1/e ,1]x/xdx ] +[e-∫[1/e ,1] x/xdx ]
= e-1/e+[1-1/e]-[1-1/e]
=e-1/e