证明:(1):因为Sn=2an-3n,所以Sn+1=2an+1-3(n+1),
则an+1=2an+1-2an-3,所以an+1=2an+3,
=2,
an+1+3
an+3
数列{an+3}是等比数列,
解:(2)由(1)知数列{an+3}是等比数列
又a1=S1=3,a1+3=6,
∴an+3=6?2n-1=3?2n,
所以an=3?2n-3.
(3)设存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差数列,则2ap=as+ar,即2(3?2p-3)=3?2s-3+3?2r-3
即2p+1=2s+2r,2p-s+1=1+2r-s,2p-s+1,2r-s为偶数,而1+2r-s为奇数,
所以2p+1=2s+2r不成立,故不存在满足条件的三项