lim(x→1) sin^2(x-1)/x-1 求极限

2025-01-19 23:09:28
推荐回答(4个)
回答1:

洛必塔法则。
原式=lim(x→1) sin(2x-2)/1=0

回答2:

o/o型,洛必达法则
原式=lim(x→1) [2sin(x-1)cos(x-1)]/1
=lim(x→1) sin(2x-2)
=sin0
=0

望采纳

回答3:

回答4:

lim(x->1) [sin(x-1)]^2/(x-1) (0/0)
=lim(x->1) 2sin(x-1).cos(x-1)
=0