设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f✀(ξ)=(a*f(ξ

2024-12-04 01:11:17
推荐回答(1个)
回答1:

证明:设F(x)=f(x)(b-x).则:F(x)在闭区间[a,b] 上连续,在开区间(a,b)内可导.
由于F(a)=f(a)(b-a)=0 F(b)=0, 由罗尔中值定理,存在ξ∈(a,b) ,使得 F'(ξ)=0
但F‘(x)=f’(x)(b-x)-f(x),代入得:
f’(ξ)(b-ξ)-f(ξ)=0
即:
f’(ξ)= f(ξ)/(b-ξ)