设函数f(x)为分段函数,当x≠0时,f(x)=(1⼀x)-1⼀(e^x-1),当 x=0时,f(x)=k.且f(x)在0点连续.求K和f✀(x)

2024-12-14 00:46:32
推荐回答(1个)
回答1:

f(x)=(1/x)-1/(e^x-1),
=(e^x-1-x)/[x(e^x-1)]
lim(x-->0)f(x)
=lim(x-->0)(e^x-1-x)/[x(e^x-1)]
=lim(x-->0)(e^x-1)/[(e^x-1)+xe^x]
=lim(x-->0)e^x/[e^x+e^x+xe^x]
=lim(x-->0)1/(2+xe^x)
=1/(2+0)
=1/2
∵f(x)在0点连续.f(0)=k
∴k=lim(x-->0)f(x)=1/2

f'(x)=-1/x²+e^x/(e^x-1)²