正弦定理:
sinAcosB-sinBcosA=(3/5)sinC
=(3/5)(sinAcosB+sinBcosA)
(2/5)sinAcosB=(8/5)sinBcosA即sinAcosB=4sinBcosA
所以tanA=4tanB
再用三角函数打太麻烦,设tanB=x,tanA=4x,x>1【由π/41】
tan2B(tanA)³=[2x/(1-x²)]64x³
=128(x²)²/(1-x²)
再设x²=y,y>1
tan2B(tanA)³=128y²/(1-y)=128(y²-2y+1+2y-2+1)/(1-y)=128[(1-y)-2+1/(1-y)]
再设1-y=-m,m>0
tan2B(tanA)³=-128(m+1/m+2)
∵m>0,∴m+1/m≥2
所以 tan2B(tanA)³=-128(m+1/m+2)≤-512
所以tan2B(tanA)³最大值为-512