如何用正弦定理证明余弦定理 如何用余弦定理证明正弦定理

2025-01-20 17:07:51
推荐回答(1个)
回答1:

第一个问题:
∵A+B=180°-C,
∴sinC=sin(A+B)=sinAcosB+cosAsinB,-cosC=cos(A+B)。
∴(sinC)^2
=(sinAcosB)^2+2sinAcosBcosAsinB+(cosAsinB)^2
=(sinA)^2[1-(sinB)^2]+[1-(sinA)^2](sinB)^2+2sinAcosBcosAsinB
=(sinA)^2-(sinAsinB)^2+(sinB)^2-(sinAsinB)^2+2sinAcosBcosAsinB
=(sinA)^2+2sinAsinB(cosAcosB-sinAsinB)+(sinB)^2
=(sinA)^2+(sinB)^2+2sinAsinBcos(A+B)
=(sinA)^2+(sinB)^2-2sinAsinBcosC。
∴(2RsinC)^2=(2RsinA)^2+(2RsinB)^2=2(2RsinA)(2RsinB)cosC。

由正弦定理,有:a/sinA=b/sinB=c/sinC=2R,∴a=2RsinA、b=2RsinB、c=2RsinC,
∴c^2=a^2+b^2-2abcosC。
同理可证:a^2=b^2+c^2-2bccosA、b^2=a^2+c^2-2accosB。

第二个问题:
∵a^2=b^2+c^2-2bccosA、b^2=a^2+c^2-2accosB,两式相减,得:
a^2-b^2=b^2-a^2-2bccosA+2accosB,∴2(a^2-b^2)=2c(acosB-bcosA),
∴c=(a^2-b^2)/(acosB-bcosA),
∴a^2
=b^2+[(a^2-b^2)/(acosB-bcosA)]^2
 -2b[(a^2-b^2)/(acosB-bcosA)]cosA,
∴(a^2-b^2)(acosB-bcosA)^2=(a^2-b^2)^2
 -2b(a^2-b^2)(acosB-bcosA)cosA,
∴a=b,或(acosB-bcosA)^2=a^2-b^2-2b(acosB-bcosA)cosA。

一、当a=b时,自然有:a/sinA=b/sinB。
二、当(acosB-bcosA)^2=a^2-b^2-2b(acosB-bcosA)cosA时,得:
  (acosB)^2+(bcosA)^2-2abcosAcosB=a^2-b^2-2abcosAcosB+2(bcosA)^2,
  ∴a^2[1-(cosB)^2]=b^2[1-(cosA)^2],
  ∴(asinB)^2=(bsinA)^2,∴asinB=bsinA,∴a/sinA=b/sinB。

综合一、二,得:a/sinA=b/sinB。同理可证:a/sinA=c/sinC。
∴a/sinA=b/sinB=c/sinC。