怎么证明1^2+2^2+3^2+……+n^2的求和公式

2024-11-23 03:44:12
推荐回答(3个)
回答1:

证明:

n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

=n^2+(n-1)^2+n^2-n

=2*n^2+(n-1)^2-n

n^3-1^3

=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

扩展资料

立方差公式:

证明方法:

遇到高阶项要尽量采用低阶项来对其进行简化处理,所以很容易想到a2,同时由于对a3降阶的同时还要和b3进行结合,所以很容易想到a2b这样一个加法项,因此对上式采取分别加和减一个a2b项,得到下式,同时进行相应的合并。

n为大于零的奇数,r为中括号内项的序数,后面括号中各项式的幂之和都为n-1,an表示a的n次方。(n大于0且n不等于2)

解题时常用它的变形:(a+b)3=a3+b3+3ab(a+b)和 a3+b3=(a+b)3-3ab(a+b)=(a+b)(a2+b2-ab)

相应的,立方差公式也有变形:a3-b3=(a-b)3+3ab(a-b)=(a-b)(a2+b2+ab)

回答2:

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

回答3: