简单计算一下即可,答案如图所示
设u=x+y,则y=f(x+y)=f(u) y'=dy/dx=df/dudu/dx=f'(u)u'=f'(u)(1+y')。所以有y'=f'(x+y)(1+y') 所以:y'=f'(x+y)/(1-f'(x+y))y"=d(f'(x+y)(1+y'))/dx=f"(x+y)(1+y')²+f'(x+y)y"y"=(f"(x+y)(1+y')²)/(1-f'(x+y))=f"(x+y)/(1-f'(x+y))³