已知f(x)=sinx^2+2sinxcosx+3cosx^2,x∈(0,π)

求:(I) 函数f(x) 的最小正周期和值域(II) 函数f(x) 的单调增区间.
2025-01-18 19:04:58
推荐回答(2个)
回答1:

f(x)=sin²x+2sinxcosx+3cos²x

=(1-cos2x)/2+sin2x+3(1+cos2x)/2
=√2sin(2x+π/4)+2
(I) 函数f(x) 的最小正周期T=2π/2=π

∵x∈(0,π)
∴2x+π/4∈(π/4,9π/4)

当2x+π/4=π/2.即x=π/x时,f(x)=2+√2为最大值,
当2x+π/4=3π/2.即x=5π/8时,f(x)=2-√2为最小值

∴函数f(x) 的值域为[2-√2,2+√2 ]

(II) 函数f(x) 的单调增区间

∵2kπ-π/2=<2x+π/4<=2kπ+π/2, 即kπ-π/8=
2kπ+π/2=<2x+π/4<=2kπ+3π/2,即kπ+3π/8=
函数f(x) 的单调增区间为[0,3π/8]∪(5π/8,π)

函数f(x) 的单调减增区间为(3π/8,5π/8)

回答2:

f(x)=1+2cos^2x+sin2x
=(cos2x+2)+sin2x
=(cos2x+sin2x)+2
=√2(sin2x+π/4)+2≤2+根号2,≥2-根号2.
根据SIN函数的性质
周期是π
[0+kπ,π/2+kπ]为单调递减
递增的类推