设α1,α2,α3是齐次线性方程组AX=0的基础解系则当参数a=__时,α1+aα2,α2+α3,α3+α1也是该方程组

的基础解系
2024-11-21 17:42:20
推荐回答(2个)
回答1:

(α1+aα2,α2+α3,α3+α1)=(α1,α2,α3)K
K=
1 0 1
a 1 0
0 1 1
因为 α1,α2,α3 线性无关
所以 r(α1+aα2,α2+α3,α3+α1) = r(K)
所以 α1+aα2,α2+α3,α3+α1 是基础解系的充要条件是 r(K)=3.
|K| = a+1
所以 a ≠ -1.

回答2:

a=1.