关于积分中值定理的证明

2024-12-03 12:52:33
推荐回答(3个)
回答1:

解答:如果用拉格朗日中值定理,那么中值的取值,是在开区间(a,b)内,不能在闭区间[a,b]上,两者差了二个端点!
积分中值定理的中值“克赛”,是取在闭区间[a,b]上的

回答2:

重基础重理解,注重把握整体联系,比如积分中值定理本质就是闭区间连续函数函数的介值定理的扩展,又是平均均值定理的变形,又是积分物理意义上的路程等于平均速度乘以时间,又是几何意义的面积等于平均高度乘以区间,这个你理解了,证明小菜一碟……

回答3:

证明:
把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}(x-a).
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证