∫ lnx/(1 + x²)^(3/2) dx
= ∫ lnx d[x/√(1 + x²)]、∵∫ dx/(1 + x²)^(3/2) = x/√(1 + x²)
= xlnx/√(1 + x²) - ∫ x/√(1 + x²) d[lnx]
= xlnx/√(1 + x²) - ∫ 1/√(1 + x²) dx
= xlnx/√(1 + x²) - arcsinh(x) + C
= xlnx/√(1 + x²) - ln|x + √(1 + x²)| + C
∫ 1/[(x² + 1)(x² + x)] dx
= ∫ 1/[x(x + 1)(x² + 1)] dx
= ∫ 1/x dx - (1/2)∫ dx/(x + 1) - (1/2)∫ x/(x² + 1) dx - (1/2)∫ dx/(x² + 1)
= ln|x| - (1/2)ln|x + 1| - (1/4)ln(x² + 1) - (1/2)arctan(x) + C