x^3+y^3+z^3-3xyz因式分解

2025-01-18 15:56:32
推荐回答(3个)
回答1:

x^3+y^3+z^3-3xyz
= (x^3+3yx^2+3xy^2+y^3)+z^3-3xyz-3yx^2-3xy^2
= (x+y)^3+z^3-3xy(x+y+z)
= (x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)
= (x+y+z)[(x^2+2xy+y^2-xz-yz+z^2)-2xy]
= (x+y+z)(x^2+y^2+z^2-xy-yz-zx)

不懂还可问,满意请及时采纳!o(∩_∩)o

回答2:

x³+y³+z³-3xyz
=x³+3x²y+3xy²+y³+z³-3x²y-3xy²-3xyz
=(x+y)³+z³-3xy(x+y+z)
=(x+y+z)(x²+2xy+y²-xz-yz-3xy)
=(x+y+z)(x²+y²+z²-xy-yz-xz)

回答3:

x^3+y^3+z^3-3xyz
= (x^3+3yx^2+3xy^2+y^3)+z^3-3xyz-3yx^2-3xy^2
= (x+y)^3+z^3-3xy(x+y+z)
= (x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)
= (x+y+z)[(x^2+2xy+y^2-xz-yz+z^2)-2xy]
= (x+y+z)(x^2+y^2+z^2-xy-yz-zx)